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Abstract

Special purpose trusted computing devices are currently
being deployed to offer many services for which the general
purpose computing paradigm is unsuitable. The nature of
the services offered by many of these devices demand high
security and reliability, as well as low cost and low power
consumption. Electronic Voting machines is a canonical ex-
ample of this phenomenon. With electronic voting machines
currently being used in much of the United States and sev-
eral other countries, there is a strong need for thorough
security evaluation of these devices and the procedures in
place for their use. In this work, we first put forth a gen-
eral framework for special purpose trusted computing de-
vices. We then focus on Optical Scan (OS) electronic voting
technology as a specific instance of this framework. OS ter-
minals are a popular e-voting technology with the decided
advantage of a user-verified paper trail: the ballot sheets
themselves. Still election results are based on machine-
generated totals as well as machine-generated audit reports
to validate the voting process.

In this paper we present a security assessment of the
Diebold AccuVote Optical Scan voting terminal (AV-OS),
a popular OS terminal currently in wide deployment an-
ticipating the 2008 Presidential elections. The assessment
is developed using exclusively reverse-engineering, with-
out any technical specifications provided by the machine
suppliers. We demonstrate a number of security issues
that relate to the machine’s proprietary language, called
AccuBasic, that is used for reporting election results.
While this language is thought to be benign, especially
given that it is essentially sandboxed by the firmware to
have only read access, we demonstrate that it is powerful
enough to (i) strengthen known attacks against the AV-OS
so that they become undetectable prior to elections (and

thus significantly increasing their magnitude) or, (ii) to con-
ditionally bias the election results to reach a desired out-
come. Given the discovered vulnerabilities and attacks we
proceed to discuss how random audits can be used to val-
idate with high confidence that a procedure carried out by
special purpose devices such as the AV-OS has not been
manipulated. We end with a set of recommendations for the
design and safe-use of OS voting systems.

1. Introduction

A special purpose computing device is a computing sys-
tem designed to be reliable for a certain specialized class
of applications. This is in stark contrast to the goals of
a general-purpose computer, designed to provide a broad
spectrum of services without addressing specialized secu-
rity concerns. The design of specialized devices, on the
other hand, should make it possible to offer several ser-
vices to the end-user in a more secure, reliable fashion,
something that may not be as readily feasible when using
a general-purpose computer. Notable examples of special
purpose trusted computing devices in current use are auto-
matic teller machines (ATMs or Bancomats) in banks, home
gaming stations, and electronic voting terminals.

Given that the security concerns for such specialized de-
vices vary from one application to the next, we first present
a general architecture of such a typical system. We briefly
discuss the different modules, both active and passive, that
collectively form the system. We analyze the different pa-
rameters of each module from a security standpoint and il-
lustrate the several classes of threats or attacks that can be
launched against such a system.

Based on this framework we proceed to analyze a
widely-used electronic voting technology, called Optical



Scan (OS) voting. Such voting terminals have been in active
use in many elections in the United States. Subsequently,
we focus on the proprietary language for writing software in
a particular OS voting terminal; we present malware writ-
ten in this language that affects the intended system oper-
ation. We then provide pointers and recommendations for
safe use of such systems including random audits. The hope
is that readers may garner the lessons learned from the de-
fects of the particular terminal (that is currently in use in
many states and will be employed in the upcoming 2008
presidential elections) and that the industry standards for
the security for such systems will be improved.

Electronic Voting. E-democracy [4], the use of elec-
tronic technologies to support the democratic process, is
a topic of much debate within the government, industry,
and academia. Elections form the foundation of any suc-
cessful democracy and safeguarding their integrity is nat-
urally an issue of paramount importance to the electorate.
Thus, a principal cause of concern is the accuracy, security,
and effectiveness of the electoral apparatus used to conduct
elections. After the disputed 2000 presidential election, the
role of technology in the voting process has attracted an in-
ternational audience. Electronic Voting Machines (EVMs)
have since then been brought to the focus of attention and
they were touted by many as the much needed replacement
of the previous voting technology using punch cards and
lever machines. The Help America Vote Act (HAVA) [5]
enabled the upgrade of voting equipment nation-wide with
a promised budget of $3.8 billion for election reform. As
reported in [6], depending on the state, 30% to 90% of the
funds that were eventually allocated would be spent on vot-
ing equipment. The effects of the upgrade are already evi-
dent, since in 2006 it was estimated that about 130 million
voters would be using EVMs to cast their votes [7].

While EVMs appear to offer improved performance in
terms of reducing residual vote rates, see, e. g., [8], and pro-
vide more flexible human interfaces, they also became the
subject of intense scrutiny from a computer security view-
point. Several studies [3, 9, 10, 11, 12, 1, 13, 14, 15] in-
vestigated the competence of some EVMs in use as well
as performed evaluation and security assessment and re-
turned alarming results. Evidently, there are significant de-
sign challenges to be overcome before EVMs can be con-
sidered truly satisfactory election instruments. To gain the
trust of the electorate and to maintain the integrity of the
electoral process the need for a thorough security evalua-
tion of these devices and the procedures in place for their
use cannot be understated.

It should be stressed that not all EVMs are “equal”;
excluding minor differences there are two major types of
electronic voting equipment: Direct recording electronic
(DRE) machines and optical-scan (OS) machines. There is
heated debate over which technology is more suitable, and

at present the adoption is split between the two types of sys-
tems [7], with larger counties favoring DRE machines and
smaller counties favoring OS machines. From a security as-
sessment point of view DRE’s have attracted most of the
criticism [10, 12, 13, 15], while OS technology is typically
touted as the safer alternative (though not without its own
problems [1, 14]). Indeed, an important benefit of the opti-
cal scan technology is that it naturally yields a voter-verified
paper audit trail (VVPAT)—the actual “bubble sheet” bal-
lots marked by the voters. This differentiates OS electronic
voting from DRE voting terminals (such as the Diebold Ac-
cuVote TS [10, 15] and TSx [13] terminals for example) that
provide a digital interface for voting during the elections.

Contributions. We present the following contributions.
First, we present a general framework for describing

the general architecture of special purpose trusted comput-
ing devices that highlights their vulnerable components (cf.
Section 2); we show how OS voting terminals in general,
and the AV-OS in particular, fit into this general framework.

Second, we focus on the vulnerabilities of one particu-
lar component in the architecture that deals with the critical
reporting functionality of the device. For the AV-OS, the
reporting functionality is based on the AccuBasic propri-
etary interpreted language that we reverse engineered based
on a compiler that is publicly available. We stress that we
did not have “insider access” to any of the system’s compo-
nents, and we did not have access to any vendor design or
communication specifications.

The AccuBasic language is thought to be relatively
benign, given that it is “sandboxed” by the firmware and
has only read-only access to the sensitive memory areas of
the AV-OS system. Previous works [1, 2] touched briefly
on the role of this language in developing attack vectors
against the AV-OS and did not utilize its full potential (from
the attacker’s viewpoint). The results presented in another
report [14] (that was based on insider access of the actual
source of the Accubasic interpreter), hinted to some po-
tential issues with the language, although no concrete mal-
ware was presented.

Here, we demonstrate that by implanting “AccuBasic
Malware” code into a terminal we can (i) strengthen the
previous attacks of [1, 2] by making them undetectable to
pre-election audits, thus substantially increasing the seri-
ousness of the threat by such attacks, and (ii) conditionally
bias the election results to reach a desired outcome. These
results are reported in Section 3.

Finally, we deal with random audits and how they can
be used to validate that a certain procedure carried out us-
ing specialized devices is not compromised. Audits are
based on executing the machine operation independently on
a small random sample of the device population; these re-
sults are addressed in Section 4. We finish the paper with a
review of the lessons learned from our investigation.
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Figure 1. Architecture of a special purpose trusted
computing platform.

2. Special Purpose Trusted Computing Devices

In this section we describe the general architecture that
characterizes special purpose trusted computing devices.
Typically, such a system is composed of both software
and hardware components and the interactions between the
modules are illustrated in Figure 1. From a security view-
point, the key features are the components that are accessi-
ble or easily replaceable from outside the system, namely,
the software components shown in the diagram. Note that
the perspective we take in this work is more narrow that
the general trusted computing platform paradigm, as e.g., in
www.trustedcomputinggroup.org. By narrowing
down the scope and focusing on simpler machines we are
able to better identify the issues with the particular applica-
tions that are of concern, e.g., electronic voting.

2.1. Model Description

Structured input: The system is designed to process data
in the form of a stream of input. The end-user may need to
have certain privileges to place his input data on the stream
to be processed and the input should be structured in a cer-
tain fashion. The conformity of the input as well as the
privilege of placing something into the input stream is taken
care of by the input validator:

Input Validator: Authenticating the input can be done ei-
ther independently of the system, e.g., by physically re-
stricting access or handled by the system itself, e.g., by us-
ing a PIN number or a cryptographic authentication mecha-
nism; a combination of these approaches is also possible. In
addition to authentication, the input validator must ensure
that the input is properly formed. For example, it should
prevent buffer-overflows from input of the wrong size. For
some devices, the input mechanisms are very limited, mak-
ing such validation simpler.

Output: The output of the system is controlled by the

firmware which uses the reporting software component to
form the output based on the internal state.

Initialization: The system needs to be initialized for use
before being deployed. This may be done through com-
munication with a central server. Initialization typically
includes authentication between the system and the server,
checking the integrity of the system, formating any internal
storage components, and loading updated software compo-
nents onto the system. Clearly the initialization stage has
the potential for security vulnerabilities as it touches several
parts of the system that determine its behavior. Note that
initialization may not necessarily update the firmware of the
system (only the software components will be changed).

Firmware: The firmware is the program that controls the
system. Typically this is stored in read only memory and
should be hard to replace. In our formalism, this includes
any code that is “off-limits” for an attacker (as an attacker
that controls the firmware can literally direct a device to do
anything within its capabilities). Note that other, not nec-
essarily trusted, software components may be loaded and
executed by the firmware to materialize the final operating
environment of the device and thus trusting the firmware
does not trivialize the security analysis for the device. Since
in our formalism the firmware represents aspects of the de-
vice that are trusted, it follows that the larger the scope of
the firmware, the easier it would be to ensure reliability in
an adversarial setting. It should be stressed that upgrading
the firmware is a critical operation that should be strictly
safeguarded1.

State: The state includes any accumulated stored informa-
tion in the system. The state can normally only be written
by the firmware, and can only be read through the firmware.

Layout Description: The layout software component de-
scribes how to map the input stream into events that change
the state. That is, the firmware uses the layout to interpret
the input stream and decide how to update the device state.

Reporting Component: When in the proper state, or af-
ter receiving the proper input, the firmware reports the final
(or current) state of the system. The reporting component
describes how the state is translated into the output.

2.2. Auditing

Since failures or security compromises are likely in a
widely deployed system, auditing is essential to identify
failures and security flaws. In our formal model, the in-
put stream may be stored independently of the device for
future reference and auditing purposes. Given the output of

1Some voting terminals, e.g., the AV-TS machine, have backdoors that
allow operating system upgrades through a removable memory card, thus
enabling devastating attacks against the terminal, cf. [13, 15]. Still, we
stress that a proper firmware alone is not enough to guarantee security.
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Figure 2. Architecture of the AV-OS voting ter-
minal. Note that “GEMS” is the initialization
system.

a device, it would then be possible to determine if the out-
put is correct given the input, and also to determine if the
discrepancies are statistically significant for the given ap-
plication. We note that if it is not possible to store the input
stream directly the voting terminal may assist an operator to
produce a snapshot of an input; this is what happens for ex-
ample in “voter verifiable paper audit trail” (VVPAT) voting
terminals that first print a little paper receipt of the voter’s
choices, then require the validation of the voter and finally
store the receipt for future auditing purposes.

3. Case Study: Optical Scan Electronic Voting

In this section we turn our attention to Optical Scan (OS)
electronic voting, an architecture for electronic voting de-
vices that fits into the model of special purpose trusted com-
puting devices of Figure 1 and we discuss the security vul-
nerabilities of the Diebold Accu-Vote OS optical scan vot-
ing terminal (AV-OS), specifically, those related to the soft-
ware components. First, Section 3.1 describes the AV-OS
machine in relation to the special purpose trusted comput-
ing architecture. Section 3.2 then presents attacks against
each software component based on previous work and our
own findings. Methods of delivering these attacks are illus-
trated in Section 3.3. Section 3.4 discusses some lessons to
be learned from these attacks.

3.1. The AV-OS Optical Scan Voting Terminal

The AV-OS election system consists of two components:
the AccuVote Optical Scan voting terminal (the AV-OS ter-
minal) and the ballot design and central tabulation system
(GEMS, for Global Election Management System). These
components have the following characteristics:

• The GEMS software is installed on a conventional PC

that is equipped with a serial port and includes a ballot
design system and a tabulation system.

• The specifications of an election are downloaded onto
a 40-pin 128KB Epson memory card present in the AV-
OS. This specification includes the layout of the bub-
ble sheet and candidate names.

• The AV-OS system used in this study contained the
firmware version 1.96.6 (in the form of an EPROM
chip). It is equipped with an optical scanner, a paper-
tape dot-matrix printer, a LCD display, a serial com-
munication port, and telephone jacks leading to a built-
in modem. It runs on a V25 CPU (an 8088 compatible
processor). For election deployment the system is se-
cured within a ballot box so that no sensitive controls
or connectors are exposed to the voter.

• In addition to the firmware, the AV-OS is given a byte-
code which provides functions used for reporting elec-
tion results by printing to the audit tape.

The AV-OS terminal fits into the special purpose trusted
computing device model we presented. Figure 2 shows
the architecture of the AV-OS (cf. the general framework
as shown in Figure 1). The firmware can be considered
trusted since an attack against it would require replacing the
memory chip storing the firmware. This, of course, does
not imply any guarantees regarding the correctness of the
firmware, but only that an attacker other than an insider is
unlikely to be able to tamper with it.

During an election the input stream consists of bubble
sheets in which voters have marked their votes. For our
purposes, these are assumed to be valid from the design and
printing process, and authenticated by the poll workers that
distribute the ballot sheets during an election. The machine
also has two buttons, YES and NO, which are hidden during
an election and are used by poll workers during initializa-
tion and when printing the final report or audit logs.

Before an election and prior to delivering the system at
a poll site, state officials load two pieces of data using the
GEMS software: the ballot layout and the bytecode. To-
gether with the counters, these are the three software com-
ponents of the system. The ballot layout indicates how bub-
ble sheet locations correspond to the counters located on the
memory card. The bytecode consists of functions used, for
example, to print the zero total report prior to an election
and to print the election totals after an election. The initial
state of the counters is zero.

3.2. Attack Vectors

In this section we present “attack vectors” against the
AV-OS that tamper with the software components. We first



review existing attacks that were demonstrated against the
AV-OS terminal and then we proceed to our new results.

3.2.1 Previous Attack Vectors: Initial State and Ballot
Layout

In [1], Hursti demonstrates an attack in which counters are
given values k and −k mod 65536. After the election, k
votes will thus be transfered from one candidate to the other,
and the total votes reported will remain unchanged. Specif-
ically, an attacker must gain access to the memory card and
use a card reader/writer to alter the state, after the machine
has already been initialized (note that zeroing the counters
is part of the initialization process). The reporting function-
ality is also altered in [1] to make sure that the counters
are reported as zero whereas they are not. We expand on
this direction substantially on our own demonstrated attack
vectors. A downside of this attack (and upside from the
system’s viewpoint) is that the counters can be zeroed at the
poll site by running a “mock auditing election” (of course it
is up to the state officials to incorporate such procedure into
the poll preparation procedure).

In the AV-OS terminal, the ballot layout given from the
GEMS initialization system is not digitally signed and no
attempt was made to authenticate the source of the layout
(beyond using a proprietary integrity checking protocol that
was non-cryptographic). In [2], an attack was demonstrated
in which the ballot data is downloaded and modified, and a
computer masquerades as a GEMS server in order to load
this altered layout. The result is an attack in which a candi-
date’s votes may be nullified by moving their bubble sheet
location to an area with no bubbles, or swapped with an-
other candidate’s by swapping their bubble locations.

3.2.2 Our Results : AccuBasicMalWare for Conceal-
ing Tampering and Results Manipulation

The AV-OS bases its reporting functionality on the firmware
and the AccuBasic bytecode that contains the format-
ing desired for the election (cf. Figure 2). AccuBasic
is a proprietary language that was developed by Diebold.
The AccuBasic bytecode programs are compiled from
AccuBasic code using a compiler that is part of the
GEMS initialization system. The bytecode itself is an
ASCII file and can be edited with ordinary text editors. An
AccuBasic compiler is publicly available from [20]; we
took advantage of the compiler for reverse engineering the
bytecode as AccuBasic is not a publicly specified lan-
guage. For readability, we will use the AccuBasic syntax
to illustrate the functionality of the bytecode. AccuBasic
is a procedural language and should be understandable for
readers familiar with typical procedural programming lan-
guages.

Figure 3. Election results reported by the same
AV-OS terminal before (left) and after (right) the
time 12:00 election time specified in the bytecode.
The time-bomb was activated and the counters were
unswapped to reveal the tampering.

Like the ballot layout, the bytecode is not cryptographi-
cally authenticated. In [1], special bytecode was used where
counters were reported to be zero when in fact they were
not, i.e., an attacker could force the machine to print only 0
in the “Zero Total Report,” meant to insure that the counters
are indeed 0. This could be used to hide an improper initial
state as in the case of [1].

During our own experimentation we found that the byte-
code language offers a wealth of functions that can be po-
tentially exploited by an attacker. In particular, we will
demonstrate a “time bomb” attack in which the bytecode
checks the date and time in order to decide whether the
election has begun. An attack utilizing such code can re-
tain proper behavior in pre-election testing, in which the
machine is verified by comparison with hand counted bal-
lots, while behaving improperly during the actual election.
We report on these findings below.

Concealing Tampered Initial States. The advantage of
modifying the counters (e.g., by tampering with the layout
or altering the initial state) is that the reported results will be
compromised whether they are reported via the audit tape or
electronically through the GEMS software. This means that
the recording of the votes is permanently altered, at least,
with respect to the counter area in the memory card. An



AV-OS terminal compromised with an attack such as those
described in [1] or [2] records the actual results improperly.
Still, the improper recording that is performed can be de-
tected by pre-election testing and thus this may allow the
poll-workers to isolate a tampered terminal. Still, as we
will demonstrate, it is possible to make a terminal behave
properly during pre-election tests.

In this section we demonstrate how a properly modi-
fied bytecode can test for the date and time and alter the
reported results to conceal the tampered initial state prior
to the actual election. This “double deceit” of a compro-
mised machine — behaving improperly in the real election
but properly when tested — can be achieved as follows: the
report functionality of the terminal is altered so that it cor-
rects misaligned counters or non-zero initialized counters
in the event that the ballot count is too low (which would
correspond to the case when the poll officials test a small
batch of hand-counted votes) or when the date and time is
prior to the real election time. In the case of a candidate
swapping attack, the votes can be “un-swapped,” and in the
case of modified initial counters, the pre-loaded values can
be subtracted to obtain the true value.

In other words, in standard computer security terminol-
ogy, the attacker can plant a “time-bomb” in the terminal.
Before the election, the program in the terminal’s card in-
verts the swapped counters to conceal the malicious behav-
ior (the swapping of votes). When the time of the election
comes, the illicit behavior is triggered automatically. This
sensitivity to time will prevent poll-workers that perform
the standard test procedures from revealing that a machine
is compromised prior to the election.

The rest of this section will briefly describe the bytecode
alteration, illustrating the damage that can be done with this
seemingly benign language used for reporting. When the
AV-OS terminal is asked to print the election results, it ex-
ecutes a routine z in the bytecode located on the memory
card. In its untampered state, the reporting routine loops
over all the candidates and prints out the vote count for that
candidate. This can be written, following AccuBasic syn-
tax, roughly as follows:

1 PROC z
2 %c = 0
3 FOREACH c a n d i d a t e
4 %c = c a n d i d a t e . c t r [ 0 ]
5 {PRINT VOTE COUNT AS %c}
6 ENDFOREACH
7 ENDPROC

The variable c holds the vote count to be used in the code
that performs the layout and printing on line 5. This vote
count is initialized to zero on line 2 and takes the correct
count inside the loop on line 4. The “time-bomb” attack
adds a loop at the beginning of this routine to lookup the
vote counts recorded for the two candidates that have been

swapped. It then checks the date and time and, if the elec-
tion has not yet begun, it sets the variable c in order to swap
the candidate votes, undoing the swap that was done by
changing the ballot layout. The actual AccuBasic code
then becomes:

1 PROC z
2 %c = 0
3 %i = 0
4 %j = 0
5 FOREACH c a n d i d a t e
6 IF STRCMP( c a n d i d a t e . name , ”A” ) = 0
7 %i = c a n d i d a t e . c t r [ 0 ]
8 ELIF STRCMP( c a n d i d a t e . name , ”B” ) = 0
9 %j = c a n d i d a t e . c t r [ 0 ]

10 ENDIF
11 ENDFOREACH
12 FOREACH c a n d i d a t e
13 %c = c a n d i d a t e . c t r [ 0 ]
14 IF STRCMP(DATE, ” 1 1 / 0 7 / 0 6 ” ) ! = 0
15 OR STRCMP(TIME , ” 0 7 : 0 0 : 0 0 ” ) <= 0
16 IF
17 STRCMP( c a n d i d a t e . name , ”A” ) = 0
18 %c = %j
19 ELIF
20 STRCMP( c a n d i d a t e . name , ”B” ) = 0
21 %c = %i
22 ENDIF
23 ENDIF
24 {PRINT VOTE COUNT AS %c}
25 ENDFOREACH
26 ENDPROC

Lines 3–4 declare the variables i and j which will hold
the vote counts for the swapped candidates. Lines 5–11
look up the votes for the candidates with names “A” and
“B” and store the counts in variables i and j. Lines 12–23
are the loop from the original code, but now it swaps the
votes for the target candidates on lines 16–20 when either
of the conditions on lines 14–15 are met. The first condition
tests whether it is the election day while the second condi-
tion tests whether it is late enough in the day (i.e., polls are
open and any tests must be complete). Additional condi-
tions, such as the total number of ballots received, are also
possible. Notice that resetting the counters and going back
into pre-election testing mode will not help poll-workers to
reveal the attack and will not invalidate the vote swapping
attack.

A key insight from this attack is that the limitations im-
posed by AccuBasic, namely the read-only access to the
memory card, do not prevent attacks such as these. In par-
ticular, local variables and arithmetic expressions can be
used to perform this “time-bomb” attack without using any
write-access to the memory card.



Altering Results. As evident from the previous sections,
the AccuBasic election reporting functionality is power-
ful enough to perform various kinds of biased reporting. In
particular, if the AV-OS election reporting printouts are the
sole means of reporting the election results (as it is the case
in fact in many jurisdictions) then one can write quite com-
plex malicious reporting functionalities that get triggered in
specific cases (when e.g., the number of votes of a certain
candidate are below a certain percentage) and perform ar-
bitrary vote transfers between the candidates. The election
totals report also includes the number of blank votes in each
race. A blank indicates that a voter decided not to assign
their vote to any candidate. Thus, the total votes for all can-
didates plus the blank votes should equal the total number
of ballots cast. The bytecode has access to the blank count
as well, and so can also transfer votes from these blanks to
a target candidate in the report, thus preserving total voter
counts and possibly avoiding suspicion. The code fragment
below shows part of the implementation. This fragment is
located inside a loop over all the races that prints the num-
ber of blank votes followed by the election results for that
race. Line 1 in the fragment tests for the target race number,
here race 30. Lines 3–4 count the total number of ballots
cast. Lines 6–8 then compute the number of votes that were
not cast and are free to assign to our target candidate, here
“RALPH”. Note again that this attack is possible despite
read-only access to the counters. Figures 4 and 5 illustrate
the result of attack.

1 IF r a c e . r a c e n o = 30
2 %b a l l o t s = 0
3 FOREACH c a r d
4 %b a l l o t s = %b a l l o t s + c a r d . t o t [ 1 ]
5 ENDFOREACH
6 %c a n s e l e c t = 4
7 %t o t a l v o t e s = r a c e . t o t [ 0 ]
8 %f r e e v o t e s = %b a l l o t s
9 ∗ %c a n s e l e c t − %t o t a l v o t e s

10 FOREACH c a n d i d a t e
11 IF STRCMP( c a n d i d a t e . name ,
12 ”RALPH” ) = 0
13 IF %f r e e v o t e s <
14 (% b a l l o t s − c a n d i d a t e . c t r [ 0 ] )
15 %a d d t o f a v = %f r e e v o t e s
16 ELSE
17 %a d d t o f a v = %b a l l o t s
18 − c a n d i d a t e . c t r [ 0 ]
19 ENDIF
20 ENDIF
21 ENDFOREACH
22 PRINT ”BLANKS: ”(% i − %a d d t o f a v )
23 ELSE
24 PRINT ”BLANKS: ” %i
25 ENDIF

It is worth mentioning again that the tape is used as the
primary or sole source of election results and auditing for

Figure 4. Five ballots cast in the test election to il-
lustrate moving blank votes to a candidate (only the
relevant part of each ballot is shown).

at least some areas using this system. This avoids poten-
tial security issues associated with alternatives, such as con-
necting the terminals to a network or transporting the mem-
ory cards to a central location for tabulation. However, the
ability to tamper with the printer from the loaded software,
as described here, shows that the tape alone should not be
trusted unless significant measures are taken to validate this
code.

3.3. Loading the AccuBasic Malware into a
terminal

The attacks described above highlight several vulnera-
bilities in the dynamic software portion of the voting termi-
nal, but leaves out how an attacker may modify these com-
ponents to achieve their goals. This section describes two
methods to deliver the attack that have been demonstrated
against the AV-OS machine: the removable memory card [1]
and the serial port [2]. It should be noted that although these
mechanisms are described using the AV-OS as context, sim-
ilar vulnerabilities may exist in other voting terminals since
removable media and communication ports are common to
such devices.
Memory Card. The memory card used by the AV-OS is dis-



Figure 5. The election zero report and the final total
report. Compare the reported tally to the actual ballots
cast in Figure 4.

continued in the market, though readers/writers do exist and
are obtainable2. In [1], attacks against the initial state and
the bytecode are demonstrated using such a reader/writer,
though clearly attacks against the layout data would be sim-
ilarly possible. These attacks demonstrated that no check
was made by the terminal to ensure that the card was not
tampered with or otherwise corrupted while the machine
was powered down. This represents a significant concern
because of the potential for tampering, but also because of
potential failures in the card such as bit errors or a failed
battery (the memory card is battery powered).
Serial Port. The AV-OS machine contains a phone line
and a serial port which can be used for loading election
data from GEMS and for sending results back to GEMS.
These ports can also be used to obtain a dump of the mem-
ory card, presumably for debugging puposes. The report in
[2] demonstrated a reverse engineering of the protocol be-
ing used, and a method of forging a communication given a
memory card dump. In essence, the AV-OS machine itself
was used as a reader/writer. Accessing the terminal in this
way gives an attacker control over the layout and reporting

2We actually rented on a weekly basis such a card reader/writer. It was
not possible to find one for sale.

components, though not direct access to the counters.

3.4. Lessons Learned

In this paper we have shown that the AV-OS system has
several serious vulnerabilities that can be used to alter elec-
tion results. Here we outline some particular shortcomings
and identify aspects that should be addressed to obtain a ro-
bust OS voting terminal. We also note that a number of pre-
vious works ([16, 17, 18] to name a few) addressed various
aspects of designing improved voting system machines.
Executable Code. Our attacks, and that of [1, 14] show
that any executables loaded onto a voting terminal must be
treated with great care, even with such limited functionality
as the bytecode used in the AV-OS terminal. In particular,
any executables should be digitally signed to authenticate
the origin of the program and the source of out of which
such executables originate must be cryptographically au-
thenticated. Note that digital signatures come with their
own concerns, e.g., key-management issues that they will
have to be carefully addressed.
Authentication. For a relatively simple system such as
the AV-OS system that uses only serial line or telephone
for communication, a cryptographic authentication mech-
anism may have seemed superfluous when it was being de-
signed. However, as it was shown, it is possible to deliver
AccuBasic malware into the AV-OS having limited phys-
ical access to the machine, using only standard hardware,
and it takes only minutes to do so. Furthermore, this could
be carried out at any time between the original initializa-
tion and election day. Therefore, there are ample opportu-
nities for an attacker to gain access to the machines. The
lesson here is that any voting terminal should authenticate
the sender of election data, including both the layout and
reporting components.
Removable Hardware. Voting terminals should perform a
cryptographic integrity check on the contents of removable
devices if such contents are persistent; in the AV-OS such
checks are missing. In such a situation, any removable de-
vice (e.g., a memory card) must be sealed and any removed
device should be considered compromised.
Random Audits. Post-election random audits of the voting
machines coupled with manual-counts would help identify
faulty or compromised voting machines. In Section 4, we
discuss the degree of auditing that needs to be performed
in order to achieve an acceptable level of confidence in the
election results.

Finally we note that without due electronic security,
cryptographic integrity checks, and authentication, the only
remaining defense is to impose strict control of physical
custody of the voting terminals and associated election
management systems.



4. Audits

In this section we discuss how audits can be used to test
the integrity of a procedure that is carried out by a spe-
cial purpose trusted computing device. The fundamental
assumption here is that the real input stream is stored and
is available for auditing purposes. The principal issue we
resolve in this section is the following: suppose that a pro-
cedure was carried out by a number of devices that could
have been tampered with individually. Given that the input
stream is stored for each one, for how many devices the cal-
culation should be independently repeated and compared to
the “machine counts” to have a reasonable confidence that
no machine tampering occurred?

It should be stressed that a random sampling plays a
crucial role for an unbiased audit report. In [19] a simple
method for sampling precincts in an observable way is pre-
sented. Here we give some tradeoff between the number of
machines to be audited and a level of confidence to find at
least one compromised machine.

First consider the case in which compromised machines
are sampled with replacement. In this case, we can compute
the number of machines that must be audited for a given
level of confidence that at least one compromised machine
is found. Table 1 shows the level number of machines that
should be audited for a probability that at least one such ma-
chine was found and a given fraction of machines that are
compromised. For example, if 95% confidence is desired
and 10% of the machines are compromised, then 28 ma-
chines should be audited in order to be 95% sure that one
such machine was found. This is computed as

s =
log(1− c)
log(1− f )

where s is the required sample size, c is the level of con-
fidence and f is the fraction of machines that are compro-
mised. This table is valid for any number of total machines
and represents a “safe” bound on the sample size.

Next, consider the case in which the number of machines
is known and we wish to compute the probability that we
have found at least one compromised machine. Table 2
shows, for the case of 800 machines, the probability that at
least one compromised machine is found for a given sam-
ple size and compromised ratio. For example, if 10% of the
machines (80 in this case) are compromised, and a sample
size of 20 is used, then we can be 88% sure that our sample
will include a compromised machine. This is computed as

c = 1−
(N(1− f )

s

)(N
s

)
where c is the confidence that a compromised machine will
be found, N is the total number of voting machines, f is

Table 1. Number of machines that need to be audited
to achieve desired level of confidence that at least one
compromised machine was found.

Confidence
Machines
compromised 90.0% 95.0% 97.0% 99.0% 99.5%

5.0% 45 58 68 90 103
7.5% 30 38 45 59 68

10.0% 22 28 33 44 50
12.5% 17 22 26 34 40
15.0% 14 18 22 28 33
17.5% 12 16 18 24 28
20.0% 10 13 16 21 24

Table 2. Probability of finding at least one compro-
mised machine given a known number of machines
(800 in this case).

Fraction of machines compromised
Sample

size 5.0% 7.5% 10.0% 15.0% 17.5% 20.0%

10 0.40 0.54 0.65 0.81 0.86 0.89
15 0.54 0.69 0.80 0.92 0.95 0.97
20 0.67 0.79 0.88 0.96 0.98 0.99
25 0.73 0.86 0.93 0.98 0.99 0.99
30 0.79 0.91 0.96 0.99 0.99 1.00
35 0.84 0.94 0.98 0.99 1.00 1.00
40 0.88 0.96 0.99 0.99 1.00 1.00

the fraction of machines that are compromised, and s is the
sample size.

These tables show that auditing is feasible, even for a
high level of confidence.

5. Conclusion

In this paper we presented an architectural model for
special purpose trusted devices that models well electronic
voting systems. We then presented a case study of the AV-
OS system including an analysis of recent findings from the
literature and our own experimentation. We analyzed the
proprietary AccuBasic language that is used by the AV-
OS and we presented malware written in this language that
can be used to either strengthen previously known attacks
or make them undetectable by pre-election tests. We also
presented AccuBasic malware that biases the reporting
functionality and misrepresents the counts. Next, we dis-
cussed how to perform audits based on random sampling
in large scale deployments of trusted devices to ensure that
no devices have been tampered. Finally, we discussed the
lessons to be learned from these investigations.

It is clear from this work that security issues exist in the



AV-OS system, and any system with a similar architecture
will posses similar flaws unless proper security procedures
are put in place. Of particular interest is the flexibility of
attacks through the bytecode, despite having no ability to
write to the internal storage. The ability to modify the lay-
out and reporting functionalities is essential to make such
a system flexible enough to be practical. However, in ad-
dition to authentication mechanisms, verification that these
components are behaving properly should be a mandatory
requirement.
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