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Abstract

Risk-limiting audits (RLAs) are rigorous statistical procedures meant to detect invalid election results. RLAs
examine paper ballots cast during the election to statistically assess the possibility of a disagreement between the
winner determined by the ballots and the winner reported by tabulation. The design of an RLA must balance risk
against e�ciency: “risk” refers to a bound on the chance that the audit fails to detect such a disagreement when one
occurs; “e�ciency” refers to the total e�ort to conduct the audit.

The most e�cient approaches—when measured in terms of the number of ballots that must be inspected—proceed
by “ballot comparison.” However, ballot comparison requires an (untrusted) declaration of the contents of each
cast ballot, rather than a simple tabulation of vote totals. This “cast-vote record table” (CVR) is then spot-checked
against ballots for consistency. In many practical settings, the cost of generating a suitable CVR dominates the cost
of conducting the audit which has prevented widespread adoption of these sample-e�cient techniques.

We introduce a new RLA procedure: an “adaptive ballot comparison” audit. In this audit, a global CVR is never
produced; instead, a three-stage procedure is iterated: 1) a batch is selected, 2) a CVR is produced for that batch, and
3) a ballot within the batch is sampled, inspected by auditors, and compared with the CVR. We prove that such an
audit can achieve risk commensurate with standard comparison audits while generating a fraction of the CVR. We
present three main contributions: (1) a formal adversarial model for RLAs; (2) de�nition and analysis of an adaptive
audit procedure with rigorous risk limits and an associated correctness analysis accounting for the incidental errors
arising in typical audits; and (3) an analysis of e�ciency.

1 Introduction

We consider the task of conducting a risk-limiting audit of a conventional election based on paper ballots. This
framework calls for the election to be organized in three stages:

Ballot casting: Voters mark paper ballots with their preferences, producing a voter-veri�ed paper trail [7, 20].

Tabulation: Ballots are tabulated and aggregated by (untrusted) tabulators forming a tabulated outcome.

Storage: Ballots are stored in preparation for audits.

The tabulation and storage phases must ensure “ballot invariance”: no ballots may be destroyed, introduced or
modi�ed. Many countries across the world and municipalities across the United States carry out elections modeled
on this ideal.

Risk-limiting audits (RLAs) are techniques for testing the veracity of the tabulation step [15]. Assuming ballot
invariance, RLAs explicitly bound the probability that a disagreement between the tabulated winner and the winner
determined by the paper trail is undetected by the audit. RLAs must be transparent: it must be possible for an external
observer to verify that the audit was conducted properly. While a variety of speci�c methods have been proposed,
the basic landscape is dominated by two approaches (see the discussion in [3–5, 13, 15, 16, 18, 23, 24, 29, 33, 34, 36]
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and Section 1.2): a) “polling” randomly sampled ballots to directly estimate margins, and b) “comparing” randomly
sampled ballots (or groups of ballots) against a cast-vote record table. We discuss this approach in detail below.

As mentioned above, the aim of the audit is to detect circumstances where the tabulated winner of the election is
not, in fact, the winner as determined by the paper trail. The paper trail itself—typically consisting of paper ballots
marked directly by voters—is assumed to have an unambiguous interpretation that serves as the ground truth for
the audit.1 The risk of the audit, denoted throughout by α, is (an upper bound on) the probability that the audit
incorrectly concludes an election to be correct when the tabulated and ground truth outcomes disagree.

Polling. A ballot polling audit proceeds by drawing a collection of randomly sampled ballots; the votes cast on these
sampled ballots are then used to statistically infer the winner of the election. For example, in a single two-candidate
race, uniform sampling of ballots yields a direct estimate of the diluted margin µ of the race, equal to the number of
votes cast for the winner minus those for the loser divided by the total number of ballots cast that contain the race.
This estimate achieves risk α, correctly determining the winner with probability 1− α, a�er sampling Θ(log(α)/µ2)
ballots.

Comparison. Ballot comparison audits, in contrast to polling audits, require additional metadata about the election:
a cast-vote record table (CVR) that declares the votes cast on each ballot in the election. This additional metadata—even
though it is not assumed to be correct by the auditor—yields a dramatic reduction in the number of ballot examinations
necessary for the same risk level: in particular, only Θ(log(α)/µ) ballots need to be examined to achieve risk α, with
µ as above.2

This would appear to establish ballot comparison as the dominant auditing paradigm as the number of ballots that
must be examined scales more favorably in the margin. However, we are not aware of any mass-produced voter-facing
tabulator that produces ballot-identifying CVRs suitable for a risk-limiting audit. (See the discussion in Section 1.1.2.)
For elections with voting facing tabulation, CVRs must then be produced during a second round of processing by
transitive tabulators that are speci�cally designed to produce CVRs. (The terminology here is meant to mimic the
language of a “transitive ballot comparison audits” [15].) Unfortunately, this second round of processing—for reasons
we discuss in detail below—tends to dominate the cost of the ballot comparison audit.3

For example, Rhode Island’s RLA pilot estimated the setup cost for a ballot comparison audit to take roughly six
times as long as conducting the audit [9, Table 2].4 This was presumably the major factor in Rhode Island’s adoption
of ballot polling (rather than ballot comparison) for its RLA of the 2020 presidential election [14]. Connecticut’s pilot
found this ratio to be much higher, with CVR generation taking 99% of the audit execution [11, Section 6.2].5 These
pilots used di�erent tabulators and di�erent methods for identi�cation—RI imprinted using a high speed scanner,
while CT manually applied identi�ers. While these �gures are from pilots, they indicate that CVR generation is an
important cost factor in the design and implementation of ballot comparison RLAs.

To conclude, ballot comparison audits o�er signi�cant advantages in ballot sample size. However, in many settings
the generation of CVRs is an expensive, separate step that renders the approach non-competitive with ballot polling
except in circumstances with small margins. We are not aware of any statewide election procedures in the United
States that combine voter-facing tabulators with the e�ciency bene�ts a�orded by ballot comparison RLAs.

1In practice, audits may have to contend with disagreements among human interpretations of the paper trail and, in such cases, must provide a
mechanism (majority vote, say) for yielding a �nal interpretation.

2The use of asymptotic notation here is meant to highlight how the e�ciency of the audit—that is, the number of ballots that must be
examined—scales with margin. Of course, practice demands explicit bounds which have been developed by a sizable literature; see [32] for a
survey. We remark that the complexity can also be parameterized in terms of the tabulated diluted margin, equal to the margin de�ned above with
the tabulated vote totals. See [35] for a detailed discussion.

3There are tabulators, such as the ES&S DS850 https://www.essvote.com/products/ds850/, designed for central tabulation that produce
CVR tables suitable for comparison audits. These tabulators directly imprint identi�ers on physical ballots in order to address the identi�cation
problem. Colorado, which uses mail-in voting and centrally processes ballots by county, uses such tabulators to support ballot comparison audits.

4This assumes a 10% margin and 10% risk limit with a 75% chance for the audit to complete.
5This analysis considers a 2% margin, 5% risk limit, and considers the expected number of ballots retrieved. The fraction of time dedicated to

CVR generation increases as margin increases; one selects fewer ballots.
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1.1 Our results: Adaptive Risk-Limiting Audits

Typical ballot storage organizes ballots into physical batches; in the context of ballot comparison audits, these provide
a direct means for referencing and locating individual ballots. The election CVR required for the ballot comparison
audit is then logically composed of a batch CVR associated with each batch.6 To emphasize this distinction, we refer
to the full election CVR as a global CVR. In cases where the total number of batches exceeds the number of ballots
sampled during the audit, some batch CVRs will not be directly examined during the audit procedure. For example,
Florida tabulates by precinct and has over 6000 precincts [22]. Even at a 1% margin, a comparison RLA would only
select approximately 20% of these precincts for audit (see Table 1).

Development and analysis of adaptive risk-limiting audits. Considering the high cost of CVR generation, we
propose an “on-the-�y” procedure for risk-limiting election audits by ballot comparison. The informal procedure is as
follows. (The formal auditor is in Figure 3.)

(1) Ensure that the tabulation is consistent with batch sizes.

(2) Repeatedly (or, optionally, in parallel):

(a) Sample a batch with probability proportional to its size. Request a CVR to be generated for the sampled
batch. (The CVR contains a sequence of rows, each containing a ballot identi�er and purported votes
appearing on the corresponding ballot.)

(b) Ensure that the produced batch CVR declares the same total size and votes for the winning and losing
candidates as the tabulation of the batch, and declares a unique ballot identi�er in each row.

(c) Sample a row from the CVR and request a ballot with the identi�er appearing in the row.

(d) Compare the retrieved ballot with the votes declared in the CVR row and record their discrepancy.

(3) Compute risk using an appropriate statistical test.

We call this an adaptive risk-limiting ballot comparison audit because batch CVRs are created “on the �y” and
only for batches for which ballot samples are actually drawn. The audit can additionally incorporate mechanisms
to correct consistency failures that might arise in the checks of (1) and (2)b. The procedure can also bene�t from
carrying out CVR generation and sampling for di�erent batches in parallel, known as audit rounds. As such, our
techniques are never more costly than a conventional ballot comparison RLA.

Our main result is a rigorous analysis of the formal procedure which shows that with the same number of ballot

samples, adaptive comparison audits can achieve risk commensurate with standard comparison RLAs.

Adaptive ballot comparison audits can provide signi�cant e�ciency improvements for RLAs of elections carried
out using tabulators that do not provide ballot-identifying CVRs (that would directly support comparison RLAs).
Twenty-three of the 50 United States fall into this category. We use Connecticut and Florida as running examples.
They di�er widely in size: Connecticut is 29th in population, Florida is 4th. In addition, Connecticut uses a transitive
tabulator that produces CVRs [1]. Using precinct sizes from the 2020 general election as an example, for Connecticut,
at a 1% margin and 5% risk limit, 78% of the CVR is generated; for larger margins, as little as 6% of the CVR is
generated. For Florida, at a 1% margin and 5% risk limit, only 22% of the CVR is generated; for larger margins, as
little as 1% of the CVR is generated. See Table 1 for full cost estimates and Appendix A for justi�cation.

Adaptive RLAs moderate between the extremes of polling (which is e�cient at large margins) and comparison
(which is e�cient at small margins). To explain, the overall time to conduct an adaptive RLA scales with (the inverse
of) margin, while comparison has a large upfront cost to generate the full CVR and polling requires a sample size that
grows quadratically with (the inverse of) margin.

In addition to our adaptive ballot comparison methods, we introduce an adaptive group comparison audit in
Section 7 that is intended for settings where ballots are grouped into small groups (e.g., size 50) that are interpreted
together if selected. In this setting, no order needs to be kept inside of a group and ballots do not need to be individually
identi�ed.

6For the purposes of this article, the word “batch” means a set of ballots that are physically co-located with the standard assumption that the
size of each batch is known with con�dence. We also require that each batch has an (untrusted) tabulated total, which arises naturally when
batches are collections of ballots that were tabulated together (or unions of such collections).
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α = 5% Risk Limit α = 1% Risk Limit
Adaptive Comparison Adaptive Comparison
CT FL CT FL

Margin Ballots Batches % CVR Batches % CVR Ballots Batches % CVR Batches % CVR
1% 1532 590 78% 1321 22% 1886 633 84% 1579 26%
2% 548 331 44% 515 8% 725 401 53% 672 11%
3% 366 244 32% 350 6% 484 304 40% 458 8%
4% 274 192 26% 264 4% 363 242 32% 348 6%
5% 220 160 21% 213 3% 290 202 27% 279 5%
10% 110 86 11% 108 2% 145 109 14% 141 2%
15% 74 59 8% 73 1% 97 76 10% 95 2%
20% 55 44 6% 54 1% 73 57 8% 72 1%

Table 1: Fraction of CVR generated using the Adaptive RLA method for di�erent states, margins, and risk limits.
The number of ballot samples is computed with rlacalc [17]. The percentage of CVR generated by the audit is
determined by simulation; see further discussion in Appendix A.

1.1.1 The analytic challenge

The rigorous analysis of an adaptive ballot comparison RLA must contend with new phenomena that do not arise in
the standard setting: in particular, the batch CVRs relevant for the audit may be adaptively determined as a function
of the entire history of the audit. Previous analyses also make direct use of the global CVR in order to de�ne the
basic probability-theoretic events of interest; of course, in our setting this global CVR is not even de�ned. These
considerations lead to several modeling and analytic challenges, which we brie�y summarize.

A formal model for RLAs. The obligation to rigorously handle such adaptivity motivates us to lay out a formal
model for risk-limiting audits—borrowing from the successful framework of cryptographic games—that makes explicit
the assumptions and guarantees o�ered by the audit. Adopting this model, we then prove the new procedure is
risk-limiting.

Completeness and re�ecting “typical” auditing errors. Such modeling must satisfactorily address the issue of
“completeness,” by which we mean the ability of the audit to survive the anticipated errors introduced during practical
audit proceedings, such as occasional inconsistencies in human ballot interpretation and mismatches in tabulated
batch sizes and CVR-declared sizes.

Adaptive statistical tests. Finally, this adaptive setting places new demands on the underlying statistical tests
employed by the audit. Typical ballot comparison audits consider tests that consume discrepancy vectors which
indicate how selected ballots di�er from the corresponding CVR rows [15]. In contrast to standard RLA procedures,
which can be given a simple analytic treatment in terms of independent and identically distributed random samples
(from a �xed discrepancy vector), we require tests that provide guarantees for a broader class of dependent random
variables that re�ect our adaptive setting. We formulate a speci�c “induced sub-martingale” condition su�cient
for our auditing framework. As shown in Section 5.1, many natural statistical tests satisfy the condition including
the Kaplan–Markov test used in the “super simple” ballot comparison method [29, 31–33], the open-source RLA
so�ware Arlo,7 and our open-source prototype of the adaptive auditor (Github repository and Jupyter notebook).
RLA so�ware design is complex [3] and our prototype is meant to inform future development.

1.1.2 Motivating the formal auditing model

Our model provides explicit, rigorous answers to natural questions that may be obscured by informal treatments. For
example:

7https://www.voting.works/risk-limiting-audits.
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• Must ballot identi�ers be unique as they appear on physical ballots and/or as they appear in a CVR? More
broadly, must ballot identi�ers be determined by trusted auditors?

• What convention should be adopted for treating mismatches in CVR batch size and tabulated batch size?

• What e�ect can the—possibly adversarial—destruction of ballots have on audit risk and e�ciency?8

And, �nally, the question that originally motivated the model:

• What e�ect can adaptive, adversarial selection of CVRs have on audit risk?

The model itself introduces two parties, the Auditor and the Adversary. Formally, we consider an election to be
de�ned by a set of physical ballots and a set of tabulation results (which, of course, need not match the ballots). The
Auditor carries out a speci�c, �xed auditing procedure of interest; the Adversary, on the other hand, is responsible
for all of the untrusted aspects of the audit, such as CVR generation and access to ballots. The notion of risk, for a
particular auditor of interest, is now a probability upper bound that is guaranteed to hold for all possible behaviors of
the adversary.

This corresponds to a guarantee of the risk of the audit even under situations where a powerful malicious party
is attempting to deceive the auditor; of course, the same guarantees hold in the less adversarial circumstances that
typically hold in practice. The model also provides a precise method for reasoning about completeness, which re�ects
the behavior of the audit when interacting with “honest adversaries with incidental errors” that exhibit the behavior
one would expect from tabulators, CVRs, and human ballot handlers. (See Section 6.)

Remarks on practical relevance and conventional ballot comparison audits. Adaptive RLAs will improve
e�ciency in large-scale elections that (1) adopt tabulators that do not generate CVRs, or tabulators that generate
CVRs without ballot identifying information, (2) maintain the natural ballot batching determined by tabulation, which
is to say that ballots tabulated together appear in the same batch, (3) yield a number of batches that exceeds the
anticipated number of sampled ballots, and (4) possess a mechanism to produce CVRs with a corresponding means
for identifying individual ballots. Currently, 23 US states satisfy these conditions accounting for roughly half of the
US population.

Remarks on rami�cations for conventional comparison audits. Even in the context of a conventional ballot
comparison RLA (in which the full CVR is generated, typically by the tabulator itself), there are two bene�ts to these
techniques:

(1) Our proofs show it is safe to selectively release only the portion of the global CVR corresponding to batches
containing selected ballots. This improves the privacy of the audit.

(2) Our model directly specializes to the setting of conventional (non-adaptive) comparison RLAs. Thus, the fact
that uniqueness of ballot identi�ers is not necessary for RLA risk guarantees applies to traditional comparison
audits as well. To the best of our knowledge, this is the �rst time this question has been considered.

Remarks on tabulators, CVRs and ballot marking. Comparison audits require a reliable means for identifying
speci�c physical ballots in order to compare against the CVR. There are two natural means for such ballot identi�cation:
(1) the physical location of a ballot and (2) identifying marks (“serial numbers”) directly printed on ballots. Identifying
a ballot by physical location has typically been implemented by referring to the position of the ballot in a named
stack or batch. How this issue is addressed depends on the details of the tabulator. Voter-facing tabulators are those
that support direct interaction with voters, providing su�cient physical security and privacy features in order for
voters to cast their ballots at the tabulator. Typical voter-facing tabulators intentionally avoid maintaining ballot
order to protect voter privacy; thus the batching of ballots generated directly from such a tabulator is unsatisfactory
for comparison audits. A further di�culty with ballot position—even with tabulators that do preserve order—is that

8The reader excited to know the answers can refer to Section 3.3.
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the ordering is transient, subject to corruption during handling, and prone to errors during ballot indexing; Colorado,
which has successfully used ballot order for identi�cation, has observed a small but signi�cant error rate [21].

Printing identifying marks directly on ballots addresses these concerns. However, printing identi�ers on ballots
prior to voters casting their votes is a privacy concern. A natural alternative is to indelibly “imprint” ballots with
identi�ers during tabulation. Unfortunately, this complicates tabulator design: it involves additional hardware which
must provide �rm guarantees that marking cannot interfere with cast vote interpretation and, of course, must not leak
voter identity.9 As stated above, these tabulators do not preserve order, so even with identi�er imprinting, �nding a
matching ballot would be complex and time-consuming. This may explain why no mainstream voter-facing tabulators
provide this functionality. These considerations suggest that the e�ciency of near-term ballot comparison audits with
voter-facing tabulators will indeed depend heavily on CVR generation, which is the principle metric we optimize.

Options for (post-tabulation) CVR generation currently fall into two categories (1) high-speed, centralized
tabulators that provide imprinting and (2) tabulators speci�cally designed for transitive use that produce CVRs
corresponding to ballot identi�ers applied in a separate ballot identi�cation pass.

Finally, while the election security landscape is complicated, there are reasons to prefer voter-facing tabulation.
Elections are secure and trustworthy when voter registration, authentication, ballot delivery, vote casting, tabulation,
and auditing are tightly coupled. In this context, voter-facing tabulators provide a strong coupling of vote casting and
tabulation.

1.2 Related work

Risk-limiting audits, as the term is now understood, were �rst articulated in 2008 by Stark [28]. Following this, a body of
work laid down the foundations, including key assumptions and guarantees [3,10,12,15]. As indicated earlier, a variety
of speci�c methods have been explored, o�en with an eye to optimize certain practical settings [6, 15, 16, 28, 30, 33]. A
signi�cant literature has also developed around various generalizations and re�nements, including (1) supporting
various social choice functions [4, 34], (2) managing multiple races across jurisdictions [13, 24, 29, 31, 33], (3) explicit
p-value estimates [2, 6, 13, 16, 23, 28, 32, 35, 36] and (4) implementation issues [3, 10, 12].

Structure of the paper. A�er reviewing preliminaries in Section 2, we present the following: (1) an adaptive auditor
(Section 3) that de�nes the details of the adaptive audit procedure; (2) a comprehensive model of election auditing
(Section 4) expressive enough to re�ect adaptive and traditional comparison RLAs, (3) a proof that the adaptive RLA
procedure is risk-limiting for many existing statistical tests (Section 5), (4) a completeness analysis establishing that
the audits have desirable properties in the presence of errors encountered in practical audits (Section 6), and (5) an
adaptive group comparison audit (Section 7).

2 Preliminaries

The two-candidate single-race setting. We consider an audit of a single �rst-past-the-post race with two candi-
dates denotedW and L. By our naming convention, the candidateW is reported to have received more votes. The
general case—with multiple candidates and races—can be essentially reduced to this simpler case by conducting
audits for each winner-loser pair simultaneously. The p-values for these can be appropriately combined both for
candidate pairs in the same race and across races. Additional approximations can simplify the accounting; see [33],
which proposes several techniques.

Notation. We provide a quick overview of notation in Table 2; this is reviewed as we introduce the adversarial
model. Throughout, we use boldface to refer to “physical” objects, such as individual ballots (typically denoted b) or
groups of ballots (typicallyBβ). Variables determined by these physical objects are typically denoted with a super- or
subscript (Xb) with the understanding that they can be determined from the physical object.

We de�ne N = {0, 1, . . .} to be the natural numbers (including zero). For a natural number k, we de�ne
[k] = {1, . . . , k} (and [0] = ∅). We let Σ = {−2,−1, 0, 1, 2}, a set that will play a special role in our setting.

9The DVSOrder vulnerability is a notable example of an implementation that violated this.
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Notation Description

concepts

S size
W tabulated winner
L tabulated loser
µ diluted margin
α risk limit
b,Bβ physical ballot, batch of ballots
D discrepancy

modi�ers
act on ballots
tab in tabulation results
cvr in CVR

Table 2: Notation, reviewed in detail in Section 2.

In general, for a �nite set X , we de�ne X∗ to be the set of all �nite-length sequences over X ; that is, X∗ =
{(x1, . . . , xk) | k ≥ 0, xi ∈ X}. Note that this includes a sequence of length 0 which we denote λ. Finally, we de�ne
XN to be the set of all sequences {(x0, x1, . . .) | xi ∈ X}.

2.1 Election De�nitions

We now set down the elementary de�nitions of elections, manifests, and CVRs. Our setting demands some general-
izations and variants of concepts that are standard in the literature. In particular, we consider tabulations with batch
data and a batch-speci�c notion of CVR. See De�nition 5 and the preceding discussion.

De�nition 1 (Ballot family; ballot conventions). A ballot family is a collection of physical ballots partitioned into

disjoint sets denoted B1, . . . ,Bk . As a matter of notation, the ballot family is denoted B = (B1, . . . ,Bk) and the sets
are referred to as “batches.” For the sake of brevity, we use b ∈ B as shorthand for b ∈

⋃
Bβ and use |B| as shorthand

for

∑
|Bβ |. Throughout, we reserve the variable k to refer to the number of batches.

Physical ballots have three properties:

(1) There is an immutable interpretation of the votes contained on the ballot. Each b ∈ B determines a pair (Wb, Lb),
where each Wb, Lb ∈ {0, 1}.

(2) For any b ∈ B, one can determine the batch to which the ballot belongs. This de�nes an index βb ∈ [k] such that

b ∈ Bβb
.

(3) Each ballot b ∈ B is labeled with an indelible identi�er idb ∈ {0, 1}∗. Ballot identi�ers are not necessarily
unique; if the labels are unique, we say that the family is uniquely labeled.

Some RLAs use the “location” of the ballot as the identi�er (e.g., idb = 413th ballot in batch 6); our framework
works perfectly well in this setting. To re�ect practical settings where certain ballots are actually unlabeled, these can
be assigned a distinguished “unlabeled” identi�er in {0, 1}∗.

De�nition 2 (Tabulation; election). Let B = (B1, . . . ,Bk) be a ballot family. A tabulation T = (T1, . . . , Tk) for
B is a sequence where each Tβ is a triple Tβ = (Stabβ ;Wtab

β , Ltabβ ) of natural numbers. Stabβ is the number of ballots

declared by the tabulation in batch β, Wtab
β is the number of votes for the declared winner, and Ltabβ is the number of

votes for the declared loser. For a tabulation T , the tabulated totals are

Wtab =
∑
β

Wtab
β and Ltab =

∑
β

Ltabβ

with the convention that Wtab > Ltab.
An election E is a pair E = (B, T ) where B is a ballot family and T = (T1, ..., Tk) is a tabulation for B.
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We do not treat elections that declare a tie between W and L, with the assumption that this would result in a
runo� or a full hand-count audit.

Notational warning. The candidateW is the declared winner of the election (according to the tabulation). The tabulation
may not, of course, accurately re�ect the votes recorded on the ballots. The primary circumstance of interest arises
when W is not the true winner of the election.

De�nition 3 (Actual vote totals; ballot manifests). Let E = (B, T ) be an election. Let

((Sact1 ;Wact
1 , Lact1 ), . . . , (Sactk ;Wact

k , Lactk ))

denote the actual totals, where Sactβ = |Bβ | is the actual size of batch β and

Wact
β =

∑
b∈Bβ

Wb and Lactβ =
∑

b∈Bβ

Lb

are the total number of actual votes received by candidate W and candidate L in batch β. The actual totals are

Wact =
∑
β

Wact
β and Lact =

∑
β

Lactβ .

The ballot manifest of E is the tuple SactE = (Sact1 , . . . ,Sactk ).

De�nition 4 (Diluted margin; valid and invalid elections). The tabulated diluted margin of an election E is the

quantity

µtab =
Wtab − Ltab

|B|
.

An election E is invalid if the tabulated winner is incorrect: Lact ≥Wact
; otherwise, we say that E is valid.

The tabulated diluted margin is determined by both the number of physical ballots (as determined by the ballot

manifest) and the tabulation; to emphasize this, we use the notation µtab
. This is in contrast to the actual diluted margin

µact = |Wact − Lact|/|B| which is determined only by the physical ballots.

Ident. W L

id1 1 0
⊥1 1 0
id3 0 1
...

...
...

Figure 1: A CVR.

Cast-vote records (CVRs). A cast-vote record table (CVR) is an (untrusted) declaration
of both the ballots appearing in a particular physical batch and the votes appearing on the
ballots. Each row of the CVR contains a ballot identi�er and two entries in {0, 1} indicating
whether the purported ballot contains a vote for W or L.

In our setting, it is critical that tabulations provide batch-level subtotals which can
be compared against the totals declared by adaptively generated CVR tables. Traditional
RLAs require only a “global” CVR and the global consistency check that it induces the same
winners and losers as the tabulation.

De�nition 5 (Cast-Vote Record Table (CVR)). Let B be a ballot family. A Cast-Vote Record
Table (CVR) for batch β is a sequence of triples

cvr = ((ι1,W1, L1), . . . , (ιs,Ws, Ls))

where each ιr is a bitstring in {0, 1}∗ and eachWr, Lr is an element of {0, 1}. We use the following language:

(1) The elements ιr are identi�ers.

(2) The number s is the size of the CVR.

(3) The rth row is a triple cvrr = (ιr,Wr, Lr).

8



(4) The values

Scvrβ = s, Wcvr
β =

∑
1≤r≤s

Wcvr
r , and Lcvrβ =

∑
1≤r≤s

Lcvrr .

These denote the number of ballots declared by the CVR and the number of votes declared for the two candidates in

the CVR.

(5) If the identi�ers appearing in the CVR are unique, we say the CVR is uniquely labeled. If a CVR is uniquely labeled

we use rι to refer to the (unique) row with identi�er ι. Looking ahead, in Figure 4 we use the identi�ers ⊥i to
transform a CVR to one with unique labels; such labels would not appear on CVRs generated by tabulators.

Finally, a sequence (cvr1, . . . cvrk), where each cvrβ is a CVR for batch β, is a global CVR.

Discrepancy. Discrepancy measures the disagreement between claimed vote tallies, either from a tabulation or
CVR, and vote tallies determined by actual ballots.

De�nition 6 (Batch and election discrepancy). Let E = (B, T ) be an election. The discrepancy of a batch Bβ is

Dβ = (Wtab
β − Ltabβ )−

∑
b∈Bβ

(
Wact

b − Lactb

)
.

The overall discrepancy of an election is

D =
∑
β

Dβ = (Wtab − Ltab)− (Wact − Lact) .

For invalid elections Lact ≥Wact and thus µact = −(Wact − Lact)/|B|. In this case

D

|B|
=

(Wtab − Ltab)− (Wact − Lact)

|B|
= µtab + µact. (1)

The discrepancy of a CVR is unde�ned until it is generated, which is why the above “global” de�nitions focus on the
tabulation.

De�nition 7 (CVR Discrepancy). LetB be a ballot family and let cvr = ((ι1,W1, L1), . . . , (ιs,Ws, Ls)) be a CVR for

batch β. For a row r ∈ [s], de�ne the discrepancy Dcvr
r of the row r to be the value

Wr − Lr + min
(
{1} ∪

{
−(Wb − Lb) | idb = ιr,b ∈ Bβ

})
. (2)

The minimum is taken over all ballots for which idb = ιr with the default value of 1 (intuitively corresponding to a

“concealed vote” for the declared loser) when no ballot corresponds to the identi�er.

When discrepancy takes a positive value d we refer to it as a d-vote overstatement; likewise, when it takes a
negative value−dwe refer to it as a d-vote understatement. In the context of a tabulation, then, a d-vote overstatement
indicates that the reported di�erence,Wtab−Ltab, is d votes too large. Equation (2) assigns a notion of discrepancy to
a particular row of a CVR, which always takes a value in the set Σ = {−2,−1, 0, 1, 2}. In the case when an identi�er
ι corresponds to a unique ballot b, the discrepancy is the natural di�erence

Wrι − Lrι − (Wb − Lb) .
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(a) Architecture of Ballot Comparison Audit with Rounds (b) Architecture of Adaptive Ballot Comparison Audit with Rounds

Figure 2: Comparison of traditional and adaptive ballot comparison architectures. Yellow components are performed
by untrusted components. Green components must be trustworthy. The dotted arrows represent information trade,
while the solid arrows are procedure steps. The grey procedure is BasicExperiment can be done in parallel in both
traditional and adaptive RLAs. Note that in a traditional audit, the CVR is generated as part of the audit process;
in the adaptive setting, the CVR is generated only as the auditor chooses batches. The step of checking CVR and
tabulation consistency is also absent from traditional comparison audits as an audit of the CVR is an audit of the
tabulation as long as they show the same set of winning/losing candidates.

3 The Adaptive Auditor

A traditional ballot comparison audit proceeds as follows (illustrated in Figure 2a):

(1) An election is carried out, electronic tabulators generate an untrusted tabulation.

(2) Election o�cials store the physical ballots as a ballot family and produce a trusted ballot manifest that correctly
indicates the number of physical ballots in the batch.

(3) An untrusted CVR is generated.

(4) The audit repeatedly selects a CVR row and ensures that the corresponding physical ballot matches the
declaration of votes on the CVR row.

The audit either generates a risk-controlled declaration that the tabulated outcomes are consistent with the ballots or
an inconclusive result.

The adaptive alternative. As described in the introduction we consider the adaptive version of the above (shown
in Figure 2b) where CVRs are only generated when needed. This yields the following family of auditing procedures.

(1) An election is carried out and ballot family created as in steps (1)-(2) above. The tabulation declares a (sub-)
tabulation for each batch in the ballot family.

(2) The audit consists of multiple instances of the following basic experiment, which may be carried out in
parallel:

(a) A batch is sampled with probability proportional to the number of ballots.

(b) An (untrusted) CVR is generated for the batch.

(c) The CVR is compared against the declared subtotals.
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(d) An entry in the CVR is drawn uniformly and compared with the corresponding ballot.

As above, the conclusion is either “consistent” or “inconclusive.”
Multiple iterations of the basic experiment can be performed in parallel as in a traditional ballot comparison audit

to allow audit workers to create their portion of the CVR simultaneously. These are known as audit rounds which
yield a trade-o� between the total number of examined ballots and the probability of carrying out an additional round
of auditing. The impact of conducting multiple rounds can be quite high, so parameters are typically chosen to ensure
a single-round audit with high probability. All of this existing machinery applies identically in our setting.

This section focuses on the audit procedure. However, a few preliminary remarks about modeling are in order. The
risk guarantee associated with a standard comparison audit must hold for all possible CVRs that could be submitted
for the election, even those that might be speci�cally designed to frustrate the audit or obscure an invalid election.
This motivates our treatment of the environment in which an auditor operates as adversarial, including the CVRs that
are produced. We additionally assume an arbitrary labeling of ballots.

The informal treatment above already highlights an important di�erence between conventional comparison audits
and adaptive audits: the CVR generated and used for comparison by the auditor in steps (2)b–(2)d may depend on the
prior history of the audit. The need to bound risk must hold when the CVRs proposed at intermediate steps of the
audit might depend adversarially on prior CVRs, row selections, and comparison results. This ability of an adversary
intent on concealing an invalid election appears to be very powerful: for example, if an adversary has been “caught”
in a comparison iteration they may choose to declare subsequent CVRs with a low discrepancy in order to convince
the statistical test that “everything is OK.” The above procedure appears to be the �rst RLA involving an adaptive
adversary that engages with the auditor.

We begin by introducing a “strict” auditor that enforces size checks, insisting that the CVR is consistent with
tabulation. This auditor is not necessarily useful in practice, but is a convenient analytic tool. We then generalize this
auditor by de�ning the notion of a CVR transform function that is applied before the auditor checks consistency. This
extra �exibility makes it easy to construct and reason about more permissive auditors that are useful in practice. As
we show in Lemma 1, if the original strict auditor (with the identity CVR transform) is risk-limiting then the resulting
auditor is risk-limiting for every CVR transform. This allows us to introduce a transform that always produces
“consistent” CVRs.

In the next three subsections, we discuss single-tailed statistical tests, the auditor, and the intuition for included
checks. We then present the formal game including the de�nition of risk limit in Section 4, show that the auditor is
risk-limiting for an appropriate statistical test in Section 5, and discuss completeness in Section 6.

3.1 Adaptive single-tailed statistical tests

A standard approach for designing RLAs is to consider the discrepancyDcvr
r = (Wr−Lr)− (Wb−Lb) of a uniformly

selected row r of a global CVR in comparison with a ballot b corresponding to this entry (as in De�nition 7). In light
of Equation 1, if the election is invalid one has that

E
r
[Dcvr
r ] ≥ µtab + µact ≥ µtab .

Independently repeating this experiment results in a sequence of discrepancy observations D1,D2, ... taking values
in {−2,−1, 0, 1, 2}. With these random variables, one can formulate an RLA as a conventional statistical hypothesis
test by adopting the null hypothesis that the election is invalid; then one is interested in bounding the probability
that the null hypothesis is rejected when it is true. An RLA is determined by a single-tailed statistical test for these
i.i.d. random variables with the hypothesis that “E[Di] ≥ µtab.” The test decides whether to reject this hypothesis
based on examination of a �nite-length pre�x D1, . . . ,Dτ of the variables given by a “stopping time.” Informally,
such a test has risk (Type I error) α if α ≥ Pr[hypothesis rejected] when indeed E[Di] ≥ µtab. See [33, Equation 5]
for further discussion.

The adaptive setting and the domination inequalities. In our setting with an adaptive adversary, we will
require statistical tests with stronger properties. Speci�cally, as above we consider an in�nite family of random
variables X1, X2, . . . taking values in Σ with the weaker domination conditions recorded below.
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De�nition 8 (δ-dominating distributions and random variables). A sequence of bounded (real-valued) random variables

X1, . . . are said to be δ-dominating if, for each t ≥ 0,

E[Xt | X1, . . . , Xt−1] ≥ δ .

We also use this terminology to apply to the distribution D corresponding to the random variables, writing δ ED.

The variables are no longer required to be independent or have the same distribution; however, they still possess
the property that under any conditioning on the past, each random variable has expectation bounded below by δ.

De�nition 9 (Stopping time). Let Σ = {−2,−1, 0, 1, 2}. A stopping time is a function Stop : Σ∗ → {0, 1} so that
for any sequence x1, x2, . . . of values in Σ there is a �nite pre�x x1, . . . , xk for which Stop(x1, . . . , xk) = 1.

For a sequence of random variablesX1, . . . taking values in Σ, let τStop(X1, . . .) be the random variable given by the

smallest t for which Stop(X1, . . . , Xt) = 1. This naturally determines the random variableX1, . . . , XτStop , the pre�x of

the Xi given by the �rst time Stop() = 1.

With these preliminaries noted, we can de�ne the family of statistical tests that we show can support adaptive
audits.

De�nition 10 (Adaptive Audit Test). An adaptive audit test, denoted T = (Stop,R), is described by two families of

functions, Stopδ and Rδ . For each −2 ≤ δ ≤ 2,

(1) Stopδ is a stopping time, as in De�nition 9, and

(2) Rδ : Σ∗ → {0, 1} is the rejection criterion.

Let D be a probability distribution on ΣN
; for such a distribution, de�ne αδ,D = E[Rδ(X1, . . . , Xτ )] where X1, . . . are

random variables distributed according to D and τ is determined by Stopδ . Then we de�ne the risk of the test to be

α = sup
0<δ<2
δED

αδ,D, (3)

where this supremum is taken over all δ ∈ (0, 2] and over all probability distributions D for which δ ED.

In Section 5 we observe that several families of statistical tests in common use—including the popular Kaplan-
Markov test—are, in fact, adaptive audit tests.

3.2 The Adaptive Audit Procedure

We now present the adaptive auditor (Figure 3). The design of the audit procedure is motivated by three guiding
principles:

(1) Ensure tabulation consistency with the ballot manifest. (This means the size must match,Wtab ≤ Sact, and
Ltab ≤ Sact). Such checks ensure that the overall discrepancy is at least the margin for invalid elections. This
principle motivates Steps (2) and (3).

(2) Ensure that duplicate labels appearing on distinct ballots cannot increase risk. This follows from (i.) forcing
CVR tables to contain no duplicates, (ii.) adopting uniform selection of CVR rows for ballot selection and, (iii.)
noting that among the collection of ballots that may be assigned a common identi�er, there is a “pessimal”
ballot that induces the minimum discrepancy. See CheckConsistent and Step (7) of BasicExperiment.

(3) Ensure that any produced CVR for a batch has the same number of votes for the winner and loser as the declared
tabulation for that batch. This yields a lower bound on the discrepancy—determined only by the tabulation and
the ballots—between any such CVR and the ballots. See the additional checks in CheckConsistent.

This auditor and the related treatment of ballot identi�er uniqueness also have direct rami�cations for traditional
comparison audits; see the discussion in Section 4.1 below.

Figure 3 distinguishes two important algorithmic elements of the auditor by giving them separate “modular”
treatment: the statistical test and the CVR transform.
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Auditor C[T ; (Stop,R)] for an election E

(1) Receive ballot manifest and tabulation:

SactE = (Sact1 , . . . ,Sactk ); T = (Stab1 ;Wtab
1 , Ltab1 ), . . . , (Stabk ;Wtab

k , Ltabk ))

(2) For β = 1 to k:
(a) Stabβ := Sactβ ;
(b) Wtab

β := min(Wtab
β ,Sactβ );

(c) Ltabβ := min(Ltabβ ,Sactβ ).

(3) Let Sact, Stab :=
∑k
β=1 S

tab
β =

∑k
β=1 S

act
β and

µ :=

∑k
β=1(Wtab

β − Ltabβ )

Sact
.

(4) If µ ≤ 0 return Inconclusive.
(5) Initialize iter = 0.
(6) Repeat

(a) Increment iter := iter + 1.
(b) Perform Diter := BasicExperiment

until Stopµ(D1, ...,Diter) = 1
(7) If Rµ(D1, ...,Diter) = 1 return Consistent; otherwise return Inconclusive.

BasicExperiment:

(1) Select batch β with probability Stabβ /Stab.
(2) Request CVR for batch β. Denote the response cvrβ .
(3) Apply T : cvrβ := T (SactE , T, cvrβ).
(4) RowSelect: Select a row r ∈ [Stabβ ] uniformly.
(5) If CheckConsistent(SactE , T, cvrβ) = Error, return 2.
(6) Let ι be the ballot identi�er in row r; request delivery of ballot ι from batch β.
(7) If a ballot b is delivered from batch β with identi�er ι, let Wact, Lact denote the {0, 1} values on b for the

declared winner and loser respectively. Otherwise, setWact := 0, Lact := 1.
(8) Return (Wcvr

r − Lcvrr )− (Wact − Lact).

CheckConsistent(SactE , T, cvrβ):

(1) If cvrβ is not uniquely-labeled (Def. 5) return Error.
(2) If Scvrβ 6= Sactβ or Sactβ 6= Stabβ , return Error.
(3) IfWcvr 6= Wtab or Lcvr 6= Ltab, return Error.
(4) Return OK.

Figure 3: The auditor C[T ; (Stop,R)]. Here T is a CVR transform and (Stop,R) is an adaptive audit test.

(1) The statistical test. The auditor requires an adaptive audit test (Stop,R) as de�ned in De�nition 10.

(2) The CVR transform. The auditor requires a CVR transform T , which is a rule for rewriting a CVR before
comparison.

Thus a full description of the auditor is written C[T ; (Stop,R)]. In situations where the transform or the test are not
directly relevant or can be inferred from context, we simply write C.
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TId(SactE , T, cvrβ):

(1) Return cvrβ .

TForce(SactE , T, cvrβ):

(1) While there exist two rows i and j where i < j and both have identi�er ι, replace the identi�er in row j
with an unused identi�er in {⊥t}.

(2) If Scvrβ 6= Sactβ , then

(a) While Scvrβ < Sactβ add a new row to cvrβ with an unused identi�er in {⊥t} and zeroes for all votes.
(b) While Scvrβ > Sactβ remove the last row of cvrβ .

(3) IfWcvr
β 6= Wtab

β . Set i := Scvrβ .

(a) While Wcvr
β <Wtab

β set Wcvr
i = 1; set i := i− 1.

(b) While Wcvr
β >Wtab

β set Wcvr
i = 0, set i := i− 1.

(4) If Lcvrβ 6= Ltabβ . Set i := Scvrβ .

(a) While Lcvrβ > Ltabβ set Lcvri = 1, set i := i− 1.
(b) While Lcvrβ < Ltabβ set Lcvri = 0, set i := i− 1.

(5) Return cvrβ .

Figure 4: CVR transform functions.

Remarks on the auditor’s handling of the CVR. As a convenience, our treatment permits the Auditor to carry
out bookkeeping using the CVR, such as adding new rows or relabeling certain rows with new identi�ers that
are known not to match a physical ballot. For this purpose, we treat ⊥1,⊥2, . . . as a sequence of special purpose
identi�ers known not to match any ballot. These modi�cations are for internal bookkeeping of the auditor only; the
original CVR is still considered an immutable artifact of the audit.

The CVR separately records, for a given row r, whether it is associated with a vote for W or a vote for L; this
convention permits, in principle, rows of the CVR to contain votes for both candidates, known as an overvote, (a
row with 1 1 in the CVR table). This does not interfere with the risk limit of the auditor (even when used for an
election that forbids overvotes) and is convenient for the Force transform. We point out in Appendix B that this is
unnecessary, presenting a more complicated auditor that does not allow overvotes and a more complicated CVR
transform function that never creates overvotes.

3.2.1 The CVR transform

The auditor also takes as input a CVR rewriting procedure, denoted T , that will be used to “correct” the CVR before
deciding if it is consistent with the tabulation. Our proof that the auditor is risk-limiting adopts the “identity” T that
does not rewrite the CVR. In Lemma 1, we then show that if C[TId; (Stop,R)] is risk-limiting for the identity transform
then it is risk-limiting for any procedure T ′. The goal of TForce is to make the CVR consistent with tabulation with
minimal edits. We use TForce in all of our completeness analyses.

3.3 Discussion; an intuitive survey of the adaptive auditor

We prove the soundness of the auditor in Section 5; this informal discussion is for the sake of intuition.
The CheckConsistent procedure returns an error (resulting in a discrepancy of 2) in many settings that could

occur naturally in practice, such as a mismatch between the number of ballots counted on the tabulator and the number
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of ballots on the CVR. Here we discuss the role played by the various properties checked by CheckConsistent. We
remark again that a much more permissive auditor is obtained by the Force transform, discussed later.

Uniquely labeled CVRs. In our model and in many practical settings the auditor cannot ensure that ballots are
uniquely labeled. This explains the convention that de�nes discrepancy for a row r as the minimum discrepancy
across all ballots with the row identi�er ιr . The auditor does, however, ensure the uniqueness of identi�ers appearing
in the CVR. A concrete attack exists in the absence of this check. One simply labels all ballots with the same identi�er
and cra�s a CVR to be consistent with tabulation. Then when a ballot is requested one simply returns a ballot with
the votes listed in the CVR row. This attack succeeds as long as all vote patterns exist on at least one ballot. This is
why a crucial step in TForce in Figure 4 is to rewrite duplicate identi�ers on a CVR.

Treatment of missing ballots. Missing ballots are treated as though cast for the loser. If not, the adversary can
always choose to not return those ballots that show votes for the loser, e�ectively reducing the observed discrepancy.
This treatment is similar to the “phantoms to zombies” approach [2].

Enforcing equality of batch sizes. The size checks ensure that the RowSelect operation selects both a uniform
row in the CVR and (for an honest adversary) a uniform ballot in the batch.

Enforcing equality of CVR and tabulation subtotals. As discussed below, the tabulation e�ectively determines
a lower bound on total discrepancy for the batch regardless of adversarial choice of the CVR. Without the check
Wcvr = Wtab and Lcvr = Ltab, the CVR could always be consistent with the ballots without actually auditing the
tabulation.

4 An Adversarial Auditing model

As discussed in Section 3.1, the conventional formal approach to RLAs adopts the language of Neyman–Pearson
statistical hypothesis testing. This picture emphasizes the role played by the culminating statistical test. Our more
complex setting—involving adaptive selection of CVRs that may depend on the entire history of the audit—motivates
us to extend the formal treatment of the audit to the entire procedure. We adopt the “security game” framework
from the theory of cryptography, which has the expressive power to re�ect such interactions between parties. The
cryptographic model has the advantage that it explicitly identi�es an adversary, a party that is charged with frustrating
or subverting the audit, and precisely de�nes which aspects of the audit are under adversarial control.

In our framework, the adversary is responsible for producing CVRs and providing ballots to the auditor when
requested; ballot labels are also e�ectively under adversarial control, as the �nal conclusions are guaranteed for all
such labelings. The resulting game is a “physical cryptography game” along the lines of Fisch, Freund, and Naor [8].
In general, our de�nition gives the adversary control over parts of the process whenever possible. This explicitly
identi�es what aspects of the procedure must be honestly conducted for the statistical guarantees to hold. Finally, we
remark that we adopt the classical nomenclature of “soundness” and “completeness” for cryptographic games that act
as the analogues of Type I and Type II errors.

The Auditor–Adversary Game. The Auditor–Adversary game is played by two parties, the Auditor denoted by C
and the Adversary denoted by A. The game is played in the context of an election (De�nition 2) and involves the
exchange of both physical objects (ballots) and information (CVRs). Recall that we use boldface to refer to physical
objects which may be exchanged between the formal parties in the game.

Figure 5 describes in detail the adaptive RLA game between the auditor and adversary. Before discussing the
desired risk and completeness properties, we discuss our ballot identi�cation convention.

Ballot identi�cation. Our de�nition of a ballot family (De�nition 1) includes identi�ers on ballots. Recall that
ballot identi�ers are not assumed to be unique, which re�ects an important feature of practical RLAs: in general, it’s
not possible for auditors to e�ciently check physical identi�ers to ensure that there are no collisions.
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Auditor (C)–Adversary (A) game for election E = (B, T )

(1) Setup.

(a) Ballot and tabulation delivery (to A). The physical ballots B and the tabulation T are given to
the adversary A.

(b) Ballot manifest and tabulation delivery (to C). The ballot manifest SE = (Sact1 , . . . ,Sactk ) and
the tabulation T are given to the auditor C.

(2) Audit. C repeatedly makes one of the following two requests of A, or chooses to conclude the audit:

• A CVR request. C requests a CVR for batch β. A responds with a CVR denoted CVRβ .
• A ballot request. C requests a ballot from the adversary with a speci�c identi�er ι ∈ {0, 1}∗ from
some batch β.
(a) A either sends a physical ballot b in batch β, i.e. b ∈ Bβ , to C or responds with No ballot.

(3) Conclusion. C returns one of the two values:

Consistent meaning “Audit consistent with tabulation,” or
Inconclusive meaning “Audit inconclusive.”

Figure 5: The RLAC,A(E) auditing game.

Our results work perfectly well if the adversary is permitted to (re-)assign identi�ers to a batch each time they
are asked to generate a CVR for that batch (this may be the case if a tabulator imprints during the audit). There
are two crucial assumptions required for security in this setting: (1) the adversary cannot change ballot identi�ers
unless another CVR is requested for the batch, and (2) the auditor—if ever given the chance to observe the ballot—can
reliably determine idb.

An adversary can e�ectively “destroy” a ballot by choosing not to reveal it when requested.

De�nition 11 (Risk; soundness). Let C be an Auditor. For election E and adversary A let RLAC,A(E) denote the
random variable equal to the conclusion of the audit as described in Figure 5. An auditor C has α-risk (or α-soundness)
if, for all invalid elections E and all adversaries A,

Pr[RLAC,A(E) = Consistent] ≤ α .

(The probability here is taken over random choices of the auditor and the adversary.)

De�nition 11 is a property of a C (the auditor) only. That is, it holds for all invalid elections and behaviors of the
adversary. As we discuss in Section 6 completeness or Type-II errors will only be guaranteed for certain A.

4.1 Modeling conventional RLAs

This modeling can apply directly to conventional ballot-comparison audits. In particular, by restricting the class
of adversaries to those that draw all batch CVRs from a �xed global CVR, one obtains a model that corresponds
to a conventional comparison audit. In particular, as this is a smaller class of adversaries, all of the conclusions of
the paper apply to this setting (including the conclusions for the speci�c auditor we consider). This auditor can
provide privacy improvements over traditional auditors, as it only needs to release portions of the global CVR table.
As an alternate modeling approach, one can formulate an auditor that initially requests the entire CVR; with this
convention, one can return to universally quantifying over all adversaries. The risk limits for this auditor follow
directly from our proofs. Finally, we mention that these techniques demonstrate that traditional RLAs do not require
the uniqueness of physical ballot identi�ers.

The model can also be adapted to reason about polling audits, where auditors never issue CVR requests and tacitly
assume a “position based” labeling. For simplicity, this variant calls for the adversary to label all ballots at the outset.
These labels are never communicated to the auditor, who simply assumes that ballots are given labels of the form
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(b, n), where b is a batch number and n is a “sequence number” between 1 and the size of the batch. (Note that the
auditor can deduce this label set from the ballot manifest.) Intuitively, this corresponds to the natural setting where
ballots in each batch are placed in order and selection is determined by identifying a particular index in a particular
batch. We remark that there are ballot polling techniques that are not directly re�ected by this modeling: for example,
techniques that treat “asking for a random ballot” as an atomic operation. (For example k-cut which cuts a stack
of ballots an appropriate number of times [26].) Of course, with further alterations to the model, this could also be
treated as a (necessarily) trusted operation.

5 C[TId; (Stop,R)] is Risk-Limiting

The key for establishing that C is risk-limiting is to demand that the generated CVR is nearly consistent with the
previously generated tabulation. We observe that with this assurance, the tabulated results e�ectively generate a
forcing “commitment” on the discrepancy of any CVR that the adversary may generate. Batch tabulations now play
an essential role in the analysis by enforcing this commitment. In a conventional ballot comparison audit, the details
of the tabulation itself can be ignored so long as the tabulation and CVR declare the same winner: The operational
details of the audit are determined entirely by the CVR.

Theorem 1. Let (Stop,R) be an adaptive audit test with risk α; let T be an arbitrary procedure that transforms CVRs

to CVRs. Let C the auditor in Figure 3. Then C[T ; (Stop,R)] has risk α.

Proof. We begin with the next Lemma, showing that a T does not a�ect whether an auditor is risk-limiting.

Lemma 1. Let T be a (possibly randomized) procedure that takes as input (SactE , T, cvrβ) and rewrites cvrβ . Let
(Stop,R) be a statistical test and let C be an auditor as in Figure 3.

If C[TId; (Stop,R)] satis�es De�nition 11 with α-risk then C[T ; (Stop,R)] satis�es De�nition 11 with α-risk.

The proof of Lemma 1 has a simple core: For every adversary, A that succeeds in the presence of T one can de�ne
another adversary A′ that applies T before returning the CVR to the auditor.

Proof. We show the result by the contrapositive. Fix some statistical test (Stop,R). Suppose that for some election E
there exists an adversary A such that

Pr
CT ,(Stop,R)

[RLACT ,(Stop,R),A(E) = Consistent] > α .

Consider C[TId; (Stop,R)]. Assume for a moment that the test Stop always outputs 0. (This is just to de�ne a
sequence of length `, noting that the selection of batches/ballots is independent in each iteration though the resulting
discrepancies need not be independent).

Fix some positive number ` and consider a sequence of selected batches β1, ..., β` and selected locations within a
batch ι1, ..., ιβ with ιβ =⊥ as a special value indicating that no ballot is selected. Here we that note both of these
sequences of random variables are independent of an adversary and only depend on the electionE. Furthermore, note
that these sequences are identically distributed in C[TId; (Stop,R)] and C[T ; (Stop,R)] except that some locations
may be ⊥ in either sequence but not in the other. Consider the following adversary A′ for the auditing experiment
with C[TId; (Stop,R)].

• A′ initializes A with E.

• A′ runs A and forwards all audit requests to A. Upon receiving a response cvrβ from A, compute cvr′β =

T (SactE , T, cvrβ) and return cvr′β to C[TId; (Stop,R)].

• Upon receiving request for ballot ι, forward request to A and return ballot returned by A.

A′ exactly replicates the view that A would experience interacting with C[T ; (Stop,R)]. The sequence of batches
and locations selected in C[TId; (Stop,R)] when interacting withA′ is identically distributed to C[T ; (Stop,R)] when
interacting with A.
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We de�ne ~DC[T ;(Stop,R)],A as the sequence of discrepancies produced by A when interacting with C[T ; (Stop,R)].
Similarly, de�ne ~DC[TId;(Stop,R)],A′ as the sequence of discrepancies produced by A′ interacting C[TId; (Stop,R)]. We
now remove the assumption thatStop always outputs 0. Then, the two sequences ~DC[T ;(Stop,R)],A and ~DC[TId;(Stop,R)],A′

are identically distributed. Thus, it must be the case that

Pr
C

[RLA~DC[TId;(Stop,R)],A′
(E) = Consistent] > α .

This is a contradiction and proves Lemma 1.

We then analyze BasicExperiment de�ned in Figure 3 where a batch is selected with probability proportional
to its actual size and a uniform row is selected from the generated CVR. Before analyzing a single iteration of
BasicExperiment, we consider the result of Steps (2) to (8) in BasicExperiment for some �xed β and adversary
A (and the identity CVR transform). That is, we focus on the random variables r and DAβ de�ned by the following
procedure and denoted as BasicExperimentβ .

De�nition of the random variables r and DAβ :

(1) A generates a CVR for β, denoted cvr.

(2) A row r ∈ [Sactb ] is drawn independently and uniformly at random.

(3) DAβ is de�ned to be 2 if CheckConsistent outputs Error.

(4) If DAβ has not already been set to 2 in the step above, let ι be the identi�er appearing in row r. The adversary
is asked to return a ballot from batch β with identi�er ι. If the adversary responds with such a ballot b,
DAβ = (Wr − Lr)− (Wb − Lb); otherwise DAβ = (Wr − Lr) + 1.

Claim 1. Consider BasicExperimentβ for an adversary A and a batch β. Then E[DAβ ] ≥ Dβ/Sβ .

Proof. The random variable DAβ is determined by selection of cvr by A, (independent) uniform selection of r by C,
and �nal selection by A of a ballot to return. The proof only requires that cvr and r are independent; in particular,
cvr may be chosen with arbitrary dependence on the history of the audit. We remark that the same guarantee holds
if multiple instances of BasicExperimentβ occur in parallel, as the independence assumption is guaranteed by C.

We will show that the inequality holds conditioned on any �xed CVR cvr produced by the adversary in the �rst
step; hence it holds for any distribution of CVRs. Note that if CheckConsistent = Error for this CVR then DAβ = 2
and the claim is clearly true. Otherwise, CheckConsistent = OK, the CVR cvr = ((ι1,W1, L1), . . . , (ιs,Ws, Ls)) is
uniquely-labeled, s = Scvrβ = Sactβ ,Wcvr

β = Wtab
β , and Lcvrβ = Ltabβ .

For any particular row r of the cvr, let B(r) = {b ∈ Bβ | ιb = ιr} denote the set of ballots with identi�er that
matches ιr . Consider the following function of ballots in batch β, denoted OneB : [Sβ ]→ Bβ to rows in the CVR:

(1) For a row r for which |B(r)| ≥ 1 associate any ballot b ∈ B(r) with r that minimizes the resulting discrepancy
(and hence achieves Dr from De�nition 7).

(2) Of the remaining, yet unassociated, ballots, assign them arbitrarily, but in a one-to-one fashion, to the rows of
the CVR which have ballot identi�ers that do not match a physical ballot.

As the CVR is uniquely-labeled there is no contention for the ballots assigned by the �rst rule. That is, OneB is a
one-to-one function between rows and physical ballots. Furthermore, since Sactβ = Scvrβ the function OneB is also
onto; thus OneB is bijective.

For this �xed β and �xed cvr provided byA, let Dcvr,OneB
r denote the random variable (determined by the random

variable r) given by the discrepancy between the votes appearing in row r and OneB(r). That is,

Dcvr,OneB
r = (Wr − Lr)− (Wb − Lb).

We then note that, conditioned on observing a �xed cvr,

Dcvr,OneB
r ≤(1) Dcvr

r ≤(2) DAβ
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with certainty over the uniform choice of r.
The inequality ≤(1) follows immediately from the de�nition of Dcvr

r : to see this, observe that if B(r) ≥ 1 then
there is a matching ballot and Dcvr,OneB

r = Dcvr
r as they are both determined by minimum discrepancy obtained

over all matching ballots; if, on the other hand, there is no matching ballot then the inequality follows because
(Wr − Lr)− (Wb − Lb) ≤ (Wr − Lr) + 1 for any ballot b.

As for the second inequality ≤(2), note that if the adversary returns a ballot that matches the identi�er for row r,
Dcvr
r ≤ DAβ as above, since Dr is de�ned to be the minimum value over all matching ballots. If the adversary does not

return a matching ballot then Dr ≤ (Wr − Lr) + 1 = DAβ , as desired.
We conclude that

E
[
DAβ
]

=
∑
cvr

Pr[A generates cvr]E[DAβ | cvr] ≥
∑
cvr

Pr[A generates cvr]E
r

[
Dcvr,OneB
r

]
. (4)

For a �xed cvr, we may expand E
[
Dcvr,OneB
r

]
as the sum

1

Sβ

Sβ∑
r=1

(
(Wcvr

r − Lcvrr )− (Wact
OneB(r) − LactOneB(r))

)
. (5)

As OneB is bijective, every ballot appears exactly once in this sum, so we can rewrite the quantity in (5)

1

Sβ

∑
R

(Wcvr
R − LcvrR )−

∑
b∈Bβ

(Wact
b − Lactb )

 =
Dβ
Sβ

.

Returning to (4), we have

E
[
DAβ
]
≥
∑
cvr

Pr[A generates cvr]E
[
Dcvr,OneB
r

]
=
∑
cvr

Pr[A generates cvr]
Dβ
Sβ

=
Dβ
Sβ

∑
cvr

Pr[A generates cvr] =
Dβ
Sβ

,

which completes the proof of Claim 1.

We now turn to analyzing a single iteration of BasicExperiment. We de�ne the result of this experiment to be a
random variable DA, de�ned by the following procedure:

(1) Select a batch β with probability Sactβ /Sact.

(2) Carry out the local experiment with batch β.

Claim 2. For any adversary A, the expectation of DA over a single iteration satis�es

E[DA] =
∑
β

(
Sactβ

Sact
· E[DAβ ]

)
≥
∑
β

(
Sactβ

Sact
· Dβ
Sactβ

)
=

D

S
.

Theorem 1 follows from Claim 2 by noting that for any invalid election the input DA to (Stop,R) is a D/S ≥ µtab

dominated random variable and by application of Lemma 1.
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5.1 Concrete statistical tests

We recall the Kaplan-Markov test.

De�nition 12 (Kaplan-Markov [29, 31–33]). Let α ∈ [0, 1], γ > 1, `min, `max ∈ Z+
. De�ne the value

Risk
(γ)
δ (D1, ...,D`) =

∏̀
iter=1

(
1− δ

2γ

1− Diter

2γ

)
.

The (α, γ, `min, `max)-Kaplan-Markov audit statistical test is (Stop,R) where Stopδ(D1, ...,D`) = 1 if and only if

` ≥ `max ∨
(
Risk

(γ)
δ (D1, ...,D`, ) ≤ α ∧ ` ≥ `min

)
and Rδ(D1, ...,D`, ; γ) =

(
Risk

(γ)
δ (D1, ...,D`, ; γ) ≤ α

)
.

Note: One can de�ne the test without `min or `max. The parameter `max is usually set to some small fraction of the
overall number of ballots where hand counting becomes more e�cient. The parameter `min is usually set so that
some number of sampled ballots can display 1-vote overstatements while meeting the risk limit. For a λ ∗ δ fraction
of 1-vote overstatements to be acceptable

`min = − logα/

(
δ

(
1

2γ
+ λ log

(
1− 1

2γ

)))
su�ces [31].

Claim 3. The Kaplan-Markov test is an adaptive audit test.

Proof of Claim 3. Consider a sequence of bounded, non-negative and i.i.d. real-valued random variables X1, . . ., each
with mean δ. The Kaplan–Markov inequality asserts that

Pr

[
n

max
t=0

t∏
i=1

(Xi/δ) ≥ 1/α

]
≤ α for any α > 0. (6)

Critically, we observe that the Kaplan-Markov inequality applies to random variables under the weaker δ-dominating
condition. Speci�cally, assume thatX1, X2, . . . are δ-dominating (but not necessarily i.i.d.). Then the sequence of
random variables Z1 = X1/δ, Z2 = (X1/δ)(X2/δ), . . . form a nonnegative sub-martingale, which is to say that
E[Zt|Z1, . . . , Zt−1] ≥ Zt−1. According to the Doob (sub-)martingale inequality, E[maxni=1 Zi] ≤ E[Zn] and hence
Markov’s inequality can be applied to yield (6), as desired. (See, e.g., [37, §14.6] for a detailed account of the Doob
inequality). Finally, the Kaplan-Markov test for δ-dominated random variables is obtained by applying (6) to the
observed discrepancies under the transformation D 7→ 1−D/(2γ).

Other classical tail bounds directly yield adaptive audit tests by monotonicity or stochastic domination arguments.
For example, the Azuma-Hoe�ding inequality applies to this situation as it applies directly to submartingales. (See,
e.g., [19] for a detailed account.) Inequalities that optimize one side of the tail bound (e.g., the upper Cherno� bound)
can be applied to this situation via a stochastic dominance argument that exploits the fact that the test criteria are
monotone.

6 Completeness

The second natural �gure of merit for an audit is the probability that it correctly concludes that a valid election is
“Consistent.” Treating this issue is complicated by the fact that inconsistencies between the CVR and the physical
ballots are frequently observed even during vigilant audits of valid elections. Thus, the underlying statistical tests
must be parameterized in order to tolerate a certain frequency of errors. Ultimately, this leads to a trade-o� between
risk, sample size, and the probability that a valid election will be found inconclusive when the audit is subject to
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some presumed rate of inconsistencies. This third quantity we call “completeness”; this is non-standard terminology
motivated by directly analogous de�nitions in cryptography.

The traditional analysis of completeness focuses on the number of overstatements and understatements, either
according to the actual ballot population or observed empirically during the audit. The relationship to sample size
and risk then depends largely on the details of the adopted statistical test (see [17, 27] and Section 5.1). However, our
setting introduces new types of inconsistencies that may arise during an audit: in particular, mismatches between the
tabulation and CVR yield a new source of non-zero observed discrepancy.

To provide a comprehensive treatment, we augment the traditional accounting of under- and overstatement errors
with two further classes of errors. Ballot Additions can result from ballots that are scanned or tabulated more than
once (which a tabulator cannot detect without an identi�er). Ballot Deletions can result from ballots that were cast
but never scanned or whose interpretations were not included in the reported results. We remark such errors can
also arise in traditional settings. 15% of audited precincts in Connecticut in the 2020 presidential election reported a
di�erent ballot count from the tabulation [25]. To the best of our knowledge, this is the �rst formal detailed analysis
of the e�ect of additions and deletions.

Handling size, tally, and uniquely-labeled failures via the CVR transform mechanism. Recall that the
strict “default” auditor (that is, the procedure of Figure 3 using TId) rejects CVRs resulting from commonplace errors.
For example, if the CVR has one fewer row than the size of the batch or ifWcvr = Wtab + 1. To eliminate such errors,
TForce forcibly revises the CVR so as to declare sizes and vote totals consistent with the manifest and tabulation.
While this transformation corrects the CVR in this sense, it may generate new overstatements or understatements.
The CVR transform paradigm provides a uni�ed way to treat such errors by converting them into understatement
and overstatement errors, which have a well understood e�ect on standard statistical tests.

In light of the discussion above, this section provides precise control on the e�ect of size mismatches, vote tally
disagreements, or duplicated identi�ers on the resulting number of overstatements and understatements. With
these equivalencies in hand, one can compute appropriate sample sizes for di�erent statistical tests by established
techniques [17,27]. As remarked above, this approach can also be used to treat similar issues in traditional comparison
audits.

We separately present and analyze two di�erent settings. The �rst setting considers a consistent CVR and
tabulation that disagree with the physical ballots. The second setting considers an arbitrary tabulation in context of
an inconsistent CVR. We compose these in Section 6.1 to handle the general case.

De�nition 13 (The canonical CVR). Let B be a uniquely labeled ballot family. A global CVR cvr∗ = (cvr∗1, . . . , cvr∗k)
is canonical if it correctly re�ects the ballots. That is, the ballots Bβ can be placed in one-to-one correspondence with the

rows of cvrβ in such a way that both the identi�ers and votes match. For the ballot family B, cvr∗B indicates a canonical

CVR.

Observe that any canonical CVR is uniquely labeled. The canonical CVR is only determined up to a permutation of
the rows. Despite this, we say “the canonical CVR” of a ballot family.

De�nition 14 (The honest adversary). Let E = (B, T ) be an election with uniquely labeled ballots and let cvr be a
uniquely labeled global CVR. The honest adversary H(B, cvr, T ) is the adversary that responds to any CVR request

with the appropriate cvri and responds to any request for an (existing) ballot identi�er ι with the matching ballot b. If no
ballot exists matching the identi�er, it returns No ballot.

The honest adversary’s behavior is only de�ned if all ballots have unique identi�ers and the cvr is uniquely
labeled.

De�nition 15 (Pairwise CVR discrepancy). Let cvr1, cvr2 be two uniquely labeled CVRs (for the same batch of a ballot

family). For an identi�er ι that appears in both CVRs, de�ne

D(cvr1, cvr2, ι) = (Wcvr1
rι − Lcvr1rι )− (Wcvr2

rι − Lcvr2rι ) .

De�nition 16 (CVR distortion). Let B be a uniquely labeled ballot family and cvr = (cvr1, . . . , cvrk) be a global

CVR for B. Let (o1, o2, u1, u2, a, d) be natural numbers such thatWcvr, Lcvr,Scvr −Wcvr,Scvr − Lcvr are all at least
o1 +o2 +u1 +u2 +a+d. Then ˜cvr is a (o1, o2, u1, u2, a, d)-distortion of cvr if ˜cvr = cvr with the following exceptions:
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Overstatements/Understatements. There are

• o1 identi�ers ι where D( ˜cvr, cvr, ι) = 1,

• o2 identi�ers ι where D( ˜cvr, cvr, ι) = 2,

• u1 identi�ers ι where D( ˜cvr, cvr, ι) = −1,

• u2 identi�ers ι where D( ˜cvr, cvr, ι) = −2,

Deletions There are d identi�ers ι appearing in cvr that do not appear in ˜cvr.

Additions There are a identi�ers ι appearing in ˜cvr that do not appear in cvr or on any ballot.

De�nition 17 (Tabulation of CVR). Let cvr be a global CVR for a ballot family B = (B1, . . . ,Bk). The tabulation of

cvr is
Tab(cvr) = ((Scvr1 ,Wcvr1 , Lcvr1), ..., (Scvrk ,Wcvrk , Lcvrk)) .

A tabulation T is consistent with a global CVR cvr if T = Tab(cvr).

Our �rst claim bounds the (probability distribution of) discrepancy when the tabulation and CVR are consistent but
are inconsistent with the physical ballots.

Claim 4. Let (o1, u1, o2, u2, a, d) be natural numbers, let B = (B1, . . . ,Bk) be a ballot family with canonical CVR

cvr∗, and let ˜cvr = ( ˜cvr1, ..., ˜cvrk) be a (o1, u1, o2, u2, a, d)-distortion of cvr∗. For a single iteration of C[TForce]
interacting withH(B, ˜cvr,Tab( ˜cvr))),

o2 − 2a− d
Sact

≤ Pr[DH = 2] ≤ o2 + a+ 2d

Sact
,

o1 − 3a− 2d

Sact
≤ Pr[DH = 1] ≤ o1 + 2a+ 3d

Sact
,

u1 − 3a− 2d

Sact
≤ Pr[DH = −1] ≤ u1 + 2a+ 2d

Sact
,

u2 − 2a− d
Sact

≤ Pr[DH = −2] ≤ u2 + a+ d

Sact
.

Furthermore, for e = o1 + o2 + u1 + u2 we have

1− e− (3a+ 3d)

Sact
≤ Pr[DH = 0] ≤ 1− e+ (3a+ 3d)

Sact
.

Proof. Consider some �xed batch β. In the absence of additions and delections, overstatement and understatement
errors are immediate. We now consider two cases where the size of the batch is too large and when it is too small.

Let Scvrβ > Sactβ . Then Scvrβ − Sactβ rows will be deleted from the cvr. These deleted rows could correspond to any
possible discrepancy value. Note other rows will be adjusted to deal with the discrepancy of the deleted rows. At
most one vote for a winner can be added to a single row and at most one vote for a loser can be added to a single row.
If these are added the same row they do not change the discrepancy. Otherwise, they increase the discrepancy of one
row and decrease the discrepancy of another row. Thus, to compensate for the removal of a row 2 instances of a
discrepancy of −1, 0, 1 can be removed and 2 added. Compensation can remove two instances of 2,−2 discrepancy
and create at most 1 row of discrepancy 2,−2 since a discrepancy of 2,−2 can never be achieved by subtracting or
increasing discrepancy respectively. This yields the bounds for a in Claim 4.

Now consider the case when Scvrβ < Sactβ ; then Sactβ − Scvrβ rows will be added to the CVR with identi�er ⊥i. Note
that the votes on this row can be any value but there will be no matching ballot leading to a discrepancy value of 0, 1
or 2. To keep the CVR consistent with the CVR at most 2 records can have their totals adjusted as with additions. As
before, only a single row can be created with a discrepancy of 2,−2 per deletion.
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Recall that TForce forces the CVR to be consistent with the tabulation; thus the transformed CVR has the same
discrepancy as the tabulation with the actual ballots. Ideally, the observed random variable D, arising from ˜cvr
under TForce, would be identical to that arising from the original CVR ˜cvr. In the case of only overstatement and
understatement errors this is achieved.

However, this is not achieved in the case of additions and deletions. Recall that the tabulation and ˜cvr are
consistent. The corrections that happen in TForce are size corrections due to additions and deletions. Ideally, TForce
would respond to a deletion by “adding back” the deleted row but it has no information about the votes or identi�er
on the deleted ballot. Furthermore, any row that is added back may require other rows of the ˜cvr to be adjusted for
consistency with the tabulation.

Similarly, TForce would ideally respond to addition by deleting the added row but in general it cannot identify the
added row. The row it chooses to delete can then yield changes to the discrepancy distribution as indicated above.
Thus, the response to additions can increase or decrease the mean of D depending on where they are located. The
response to deletions can never cause a negative discrepancy value because the added row’s identi�er does not appear
on any ballot.

We now consider the case where errors are introduced between the tabulation and the CVR. In this setting we
assume that the tabulation has arbitrary disagreements with the canonical CVR so that the e�ect of TForce is to
ensure that the CVR for β has the same discrepancy as the tabulation. This means that the expectation of observed
discrepancy will have the same mean but TForce can increase the probability that the observed discrepancy is nonzero,
increasing the variance. That is, errors reduce the chance that the observed discrepancy will be 0. In both Claims 4
and 5 the actual distribution of discrepancy depends on the distribution of errors between batches.

Claim 5. Let (o′1, u
′
1, o
′
2, u
′
2, a
′, d′) be natural numbers and let B = (B1, . . . ,Bk) be a ballot family. Let T be a

tabulation for B and let cvrT be a uniquely labeled global CVR that is consistent with T (so that T = Tab(cvrT )).
De�ne d−2, d−1, d0, d1, d2 so that for a single iteration of C[TForce] interacting withH(B, cvrT , T )),

∀i, di = Pr[DH = i] and de :=
∑
i

i · di.

Let ˜cvr = ( ˜cvr1, ..., ˜cvrk) be a (o′1, u
′
1, o
′
2, u
′
2, a
′, d′)-distortion of cvrT . For a single iteration of C[TForce] interacting

withH((B1, . . . ,Bk), ˜cvr, T ) one has that

Pr[DH = 2] ∈ d2 ±
o′2 + o′1 + 2u′2 + u′1 + 2a′ + 3d′

Sact
,

Pr[DH = 1] ∈ d1 ±
2o′2 + 2o′1 + 2u′2 + 2u′1 + 2a′ + 3d′

Sact
,

Pr[DH = 0] ∈ d0 ±
2o′2 + 2o′1 + 2u′2 + 2u′1 + 3a′ + 3d′

Sact
,

Pr[DH = −1] ∈ d−1 ±
2o′2 + 2o′1 + 2u′2 + 2u′1 + 2a′ + 3d′

Sact
,

Pr[DH = −2] ∈ d−2 ±
2o′2 + o′1 + u′2 + u′1 + 2a′ + 3d′

Sact
,

and E[DH] = de.

Proof. Consider some �xed batch β. For a batch with an addition, some row will be deleted which can have an
arbitrary discrepancy value. As in the proof of Claim 4 in the worst case to compensate for the vote totals on the
deleted row, one row will have Wr − Lr increased and another row will have Wr − Lr decreased.

We now consider deletions. A row may be added which begins with discrepancy 0. The deleted row had an
arbitrary discrepancy. When new rows are added to compensate for the deleted rows the discrepancy of the ˜cvr must
be adjusted to match the tabulation. For each deletion, the newly added row can have any vote pattern. As before, the
created row could have a vote pattern di�erent from the ballot that was deleted. This leads to other ballots having
their vote totals adjusted to ensure the total discrepancy between ˜cvrβ and the tabulation is 0. At most two ballots
have to be adjusted to compensate for this created row. These adjustments can create any discrepancy.
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Figure 6: Claim 4 bounds the probability of each discrepancy value for the case when errors are introduced from
canonical CVR and tabulation. Claim 5 bounds the probability of each discrepancy value for the case when (additional)
errors are introduced from tabulation to the produced batch CVRs.

Now consider an o2 error. This means there is some row (ι, 0, 1) moved to (ι, 1, 0) in the CVR. As such in the
worst case the checks in Step (3) and (4) will not pass in Figure 3 (this would not be the case if u1 or u2 errors occur
in the same batch). Namely, Wcvr > Wtab and Lcvr < Ltab. To compensate for this the procedure in Figure 4 will
change some W vote from 1 to 0 and some L vote from 0 to 1. If both of these changes happen on the vote with the
o2 error then no problem occurs. If it happens on two separate this decreases the discrepancy of two rows. Analysis
for the other cases proceeds in a similar fashion.

Since the CVR is forced to have the same discrepancy as tabulation, a�er applying TForce the produced CVR has
the same discrepancy as the tabulation. But TForce could increase the probability that discrepancy is nonzero. There
are statistical tests that only depend on the expected value of DA. However, Risk, and thus Stop, of Kaplan-Markov
(and many other statistical tests) depends on the entire distribution of D (not just its expectation), so these errors do
a�ect stopping time.

6.1 Composing the two error models

Figure 6 describes a comprehensive error model where errors are �rst added from the canonical CVR and the tabulation
and then further errors are added to the CVRs provided to the honest adversary. The bounds obtained by composing
Claims 4 and 5 are below:

Pr[DH = 2] ∈ o2 ±
2a+ 2d+ o′2 + o′1 + 2u′2 + u′1 + 2a′ + 3d′

Sact
,

Pr[DH = 1] ∈ o1 ±
3a+ 3d+ 2o′2 + 2o′1 + 2u′2 + 2u′1 + 2a′ + 3d′

Sact
,

Pr[DH = −1] ∈ u1 ±
3a+ 2d+ 2o′2 + 2o′1 + 2u′2 + 2u′1 + 2a′ + 3d′

Sact
,

Pr[DH = −2] ∈ u2 ±
2a+ d+ 2o′2 + o′1 + u′2 + u′1 + 2a′ + 3d′

Sact
,

Pr[DH = 0] ≥ 1− (o2 + o1 + u1 + u2) + 2(o′2 + o′1 + u′2 + u′1)

Sact
− 3(a+ d+ a′ + d′)

Sact
.

Ideally one would show error bounds for an arbitrary combination of ballots, tabulation, and global CVR. Our
bounds assume errors are added to global CVRs in two stages �rst to tabulation, and then to CVRs returned in the
audit. We found global CVRs for each stage to be the most natural way to track di�erences. This leads to �nal bounds
that assume a particular distorted CVR used to produce the tabulation that is not seen by any party.

7 Adaptive Group Comparison Audits

We described a methodology to perform ballot comparison audits without the need to generate a global CVR for
the entire election. As described in the introduction, no such CVR is necessary if one wishes to perform a batch
comparison audit in settings where tabulated totals are available for the relevant batches. In this section, we show
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that a hybrid of these techniques is possible that permits tabulated batches to be broken into smaller untabulated
collections that we call groups; these groups of ballots are then treated analogously to individual ballots in the adaptive
audit. In particular, an audit can hand-count appropriately selected groups and compare these against an adaptively
generated “group CVR” that declares totals for each group. This yields a trade-o� between the size of the groups
(and hence the e�ort involved in hand counting them) and the number of groups. Ballots do not need to be given
identi�ers in this procedure, though groups must be identi�able.

Batch comparison audits We begin by reviewing conventional batch comparison audits, the third major family
of risk-limiting audits used in practice. We borrow notation from De�nition 2. For an election E, a batch comparison
audit consists of multiple iterations of the following experiment:

(1) A batch is selected with probability proportional to size.

(2) A full hand count is conducted for the batch.

(3) The observed discrepancy between the tabulated totals and the hand count is computed.

The envisioned hybrid audit procedure is as follows:

(1) A batch is selected with probability proportional to size.

(2) The batch is separated into ν groups and an untrusted “group CVR” is generated. This CVR reports the size,
vote total forW, and vote total for L for each group in the selected batch. Thus the CVR consists of ν triples
(Sβ,g,Wβ,g, Lβ,g), one for each value of g ∈ [ν].

(3) A group g is selected with probability proportional to its purported size, Sβ,g.

(4) A full hand count is conducted for group g. Let Sactβ,g, W
act
β,g, and Lactβ,g denote the size and relevant totals.

(5) The observed discrepancy is

DA :=
((Wcvr

β,g − Lcvrβ,g)− (Wact
β,g − Lactβ,g))

Sβ,g
.

Such a procedure may be preferable to batch comparison audits as one e�ectively identi�es groups of ballots
rather than individual ballots. Additionally, as the number of groups is typically much smaller than the number of
ballots, it may be easier to identify and locate a particular group of ballots rather than identify an individual ballot. Of
course, each comparison step in such an audit requires hand counting an entire group.

The sizes of groups declared in the group CVR is not assumed to be correct. Note, however that the notion of
batch and the assumptions pertaining to batches—in particular that a correct manifest is supplied to the auditor—are
common in the two approaches.

7.1 Adapting the Formalism

We now introduce a second Auditor–Adversary game for adaptive group comparison audits. The relevant notions of
election, vote totals, and ballot manifest are identical to those of Section 4, though ballot identi�ers are irrelevant for
this approach. (Rather than formally rede�ne the notion of ballot collection to remove identi�ers, we leave the notion
unchanged and remark that they are unused.) The meaning of a CVR is adapted as indicated above so that it declares
sizes and vote totals for groups in a batch (but contains no information about individual ballots). Figure 7 describes
the adaptive batch RLA game between the auditor and adversary.

De�nition 18 (Group Cast-Vote Record (CVR) syntax.). Let E = (B, T ) be an election. A Group Cast-Vote Record
Table (CVR) for batch β of ν groups is a sequence of tuples

cvrβ = ((Scvr1 ,Wcvr
1 , Lcvr1 ), . . . , (Scvrν ,Wcvr

ν , Lcvrν )) ,

where each coordinate is a natural number. We borrow general notation from De�nition 5. We say that a CVR is

well-formed if ∀g ∈ [ν] it holds that max(Wcvr
g , Lcvrg ) ≤ Scvrg .
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Auditor (C)–Adversary (A) game for election E = (B, T )

(1) Setup.

(a) Ballot and tabulation delivery (to A). The physical ballots B and the tabulation T are given to
the adversary A.

(b) Ballot manifest and tabulation delivery (to C). The ballot manifest SE = (Sact1 , . . . ,Sactk ) and
the tabulation T are given to the auditor C.

(2) Audit. C repeatedly makes one of the following two requests of A, or chooses to conclude the audit:

• Group CVR request. For some β, C requests a CVR for batch β. If the batch is not yet partitioned, A
selects a natural number ν ≥ 1 and indelibly assigns each ballot b ∈ Bβ to a group g ∈ [ν]. Denote
the partition of groups that arise from this assignment Bβ,1, . . . ,Bβ,ν . A responds with a group
CVR denoted CVRβ .

• Group request For some batch β that has been partitioned into ν groups by A, the auditor C requests
the physical ballots for a particular group g ∈ [ν]. A responds with B∗β,g ⊆ Bβ,g.

(3) Conclusion. C returns one of the two values: Consistent or Inconclusive.

Figure 7: The RLAGroup,C,A(E) auditing game.

At certain points in the security game, the adversary must partition the ballots from a batch into groups. Once
the batch is partitioned, this decision is immutable; the adversary may not change the partitioning later. Furthermore,
when a group is requested by the auditor, we require that the adversary responds with a subset of the selected group.
(Equivalently, one may think of the ballots as being indelibly assigned to groups in such a way that the auditor can
determine the group to which a ballot is assigned and so detect any situation where the adversary might attempt to
include in his response a ballot from another group.) Soundness for the above game is as in De�nition 11: an auditor
is α-risk limiting if for any invalid election E and any adversary A,

Pr
C

[RLAGroup,C,A(E) = Consistent] ≤ α .

7.2 The Auditor

We now present an auditor for the adaptive group setting in Figure 8 (which adapts Figure 3). As before, to argue
soundness, we consider an identity CVR transform function TId.

Next we show that BasicExperiment yields a D/|B|-dominating random variable DA. Similarly to the treatment
of Claim 1 for ballot comparison audits, we begin by focusing on the conditional distribution arising from �xing a
particular batch β (in the �rst step of BasicExperiment). We let BasicExperimentβ refer to this experiment and
let DAβ denote the random variable that arises at the conclusion of the experiment. As in the analysis of Claim 1,
observe that g is independent of the partitioning and CVR generated by the adversary. The analysis of the full
experiment BasicExperiment then follows by linearity of expectation (Claim 7). We implicitly work in the context
of an arbitrary, but �xed, election E with the constraints and assumptions arising from the portion of the audit
preceding the batch and group sampling iterations.

Claim 6. Consider BasicExperimentβ in the context of an election E = (B, T ). Then

E[DAβ ] ≥ Dβ/Sβ .

Proof. Let B1, ...,Bν be the partition of ballots created by the adversary for batch β and let cvr be the CVR returned
by the adversary. We prove the claim for an arbitrary, �xed choice of cvr and (Bg)

ν
g=1; the claim then holds for

any distribution over these values. Recall that
∑ν

g=1 |Bg| = Sβ . Note that if CheckConsistent = Error then
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Auditor C[T , (Stop,R)] for an election E

(1) Receive ballot manifest and tabulation:

SactE = (Sact1 , . . . ,Sactk ); T = (Stab1 ;Wtab
1 , Ltab1 ), . . . , (Stabk ;Wtab

k , Ltabk )) .

(2) For β = 1 to k: (a) Stabβ := Sactβ ;
(b) Wtab

β := min(Wtab
β ,Sactβ );

(c) Ltabβ := min(Ltabβ ,Sactβ ).

(3) Let Sact, Stab :=

k∑
β=1

Stabβ =

k∑
β=1

Sactβ .

µ :=

∑k
β=1(Wtab

β − Ltabβ )

Sact
.

(4) If µ ≤ 0 return Inconclusive.
(5) Initialize iter = 0.
(6) Repeat until Stopµ(D1, . . . ,Diter) = 1:

(a) Increment iter := iter + 1.
(b) Perform Diter := BasicExperiment

(7) If Rµ(D1, . . . ,Diter) = 1 return Consistent

else return Inconclusive.

BasicExperiment:

(1) Select batch β with probability Stabβ /Stab.
(2) Request CVR for batch β. Response denoted cvrβ .
(3) Apply the transform: cvrβ := T (SactE , T, cvrβ).
(4) Pick g with probability Sβ,g/S

tab
β .

(5) If CheckConsistent(SactE , T, cvrβ) = Error, Return 2.
(6) Ask adversary for ballot group g from batch β.
(7) Let Bβ,g denote the returned ballots.
(8) If |Bβ,g| 6= Sβ,g, return 2.
(9) Let Wact, Lact ∈ N denote the vote totals of the ballots returned by the adversary.
(10) Return ((Wcvr

g − Lcvrg )− (Wact − Lact))/Sβ,g.

CheckConsistent(SactE , T, cvrβ):

(1) If cvrβ is not well formed (Def. 18) return Error.
(2) If Scvrβ ,Sactβ ,Stabβ ,

∑
g S

cvr
β,g are not all equal, return Error.

(3) If
∑

g W
cvr
β,g 6= Wtab

β or
∑

g L
cvr
β,g 6= Ltabβ , return Error.

(4) Return OK.

TId(SactE , T, cvrβ):

(1) Return cvrβ .

Figure 8: The auditor CT ,(Stop,R) for adaptive group comparison.

DAβ = 2. The claim is clearly true in this case since Dβ/Sβ ≤ 2 by de�nition. We work with the assumption
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CheckConsistent = OK, and hence
∑ν

g=1 Sβ,g =
∑ν

g=1 |Bg| = Sβ , for the remainder of the proof.
In general, for a partition (A1, . . . ,Aν) of the ballots in Bβ and a family of ballot subsets (A∗1, . . . ,A

∗
ν) with

the property that ∀g,A∗g ⊂ Ag, we let Dβ((Ag)
ν
g=1; (A∗g)νg=1) denote the random variable arising from the ex-

periment if the adversary initially forms the partition given by Ag, sends cvr to C, and then answers any request
for group g with A∗g . We let (B∗g)νg=1 be the set family determined by the adversary A so that by de�nition
DAβ = Dβ((Bg)

ν
g=1; (B∗g)νg=1). The sets B∗g might not cover all the ballots in Bβ .

We now show that there exists a partition of ballots (Bmin
g )νg=1 with the property that ∀g, |Bmin

g | = Sg and,
moreover, DAβ ≥ Dβ((Bmin

g )νg=1; (Bmin
g )νg=1) (with certainty over choice of g). (Note that in this experiment the

same set system is used for the initial partition and the answers of the adversary to group requests.) To de�ne the
partition (Bmin

g )νg=1:

• We say that a group g is viable |B∗g | = Sg. In this case, de�ne Bmin
g = B∗g . Let Bviable =

⋃
g|g is viable B

∗
g .

• The sets Bmin
g for nonviable g are de�ned to form an arbitrary partition of the remaining ballots Bβ \Bviable

with the size constraints ∀ nonviable g, |Bmin
g | = Sg. Note that this is always possible because

∑
Sβ,g = |Bβ |.

Any size mismatch (when the subset of ballots returned by the adversary for a request for group g does not have
size Sβ,g) results in a maximal, default discrepancy of 2. It follows that

DAβ = Dβ((Bg)
ν
g=1; (B∗g)νg=1) ≥ Dβ((Bmin

g )νg=1), (Bmin
g )νg=1) .

Speci�cally, note that g is drawn according to the same distribution in the two experiments and, for any viable g,
these two random variables take the same value; for any nonviable g the �rst takes the default value of 2, while the
second is

(Wcvr
g − Lcvrg )− (Wact

g − Lactg )

Sg
≤ 2 ,

where the actual vote totals here are with respect to (Bmin
g ). Then one has that

E
[
DAβ
]
≥ E

[
DAβ ((Bmin

g )νg=1), (Bmin
g )νg=1)

]
=

ν∑
g=1

Sg
Sβ

(
(Wcvr

g − Lcvrg )− (Wact
g − Lactg )

Sg

)

=
(Wcvr

β − Lcvrβ )

Sβ
−

ν∑
g=1

1

Sβ
(Wact

g − Lactg )

=
(Wcvr

β − Lcvrβ )

Sβ
−

ν∑
g=1

1

Sβ

 ∑
b∈Bmin

g

(Wact
b − Lactb )


=

1

Sβ

(Wcvr
β − Lcvrβ )−

∑
b∈Bβ

(Wact
b − Lactb )


=

1

Sβ

(
(Wtab

β − Ltabβ )− (Wact
β − Lactβ )

)
=

Dβ
Sβ

.

This completes the proof of Claim 6.

Showing that this extends to the overall discrepancy follows exactly as in Claim 2:

Claim 7. The expectation of DA over a single iteration satis�es

E[DA] =
∑
β

(
Sactβ

Sact
· E[DAβ ]

)
≥
∑
β

(
Sactβ

Sact
· Dβ
Sactβ

)
=

D

S
.

Furthermore, one can easily show that CVR transforms do not a�ect whether the auditor is risk-limiting as in
Lemma 1.
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Why group sizes don’t have to be trusted. Our techniques for trusting an adversarial declaration of group sizes
do not extend to an adversarial declaration of batch sizes which must still be counted or veri�ed by a trustworthy
component. There are two key di�erences in the group setting:

(1) Group size is only hand-counted if selected, and

(2) An iteration is marked with D = 2 on any size mismatch.

In principle in an adaptive ballot comparison audit, one could add these two steps of �rst-hand counting the
entire batch and rejecting if the true size is not equal to the declared size. However, we expect this to be drastically
more work and likely to introduce more errors given the larger size of batches. One could use this technique for
small batches, for example, ballots at a precinct that contain votes for valid write-in candidates are o�en tabulated
separately.

8 Conclusion

This article presents a formal model of comparison risk-limiting audits and a new class of risk-limiting audits called
adaptive comparison audits. The formal model allows us to answer critical procedural questions such as showing that
the labeling of ballots need not be trusted. Adaptive comparison audits provide e�ciency improvements as one only
produces a CVR for batches selected for audit.

Acknowledgments

These results were developed as part of a collaboration with the O�ce of the CT Secretary of State and, additionally,
were supported in part by a grant from that o�ce.

Discussions with Mark Lindeman, Philip B. Stark, Lynn Garland, and anonymous reviewers improved the narrative
and technical treatment. A.R. is supported by a research grant from IOG and NSF grant #1801487; B.F. is supported by
NSF Grants #2232813 and #2141033 and the O�ce of Naval Research.

References

[1] T. Antonyan, T. Bromley, L. Michel, A. Russell, A. Shvartsman, and S. Stark. Computer assisted post election
audits. State Certi�cation Testing of Voting Systems National Conference, 2013.

[2] J. H. Banuelos and P. B. Stark. Limiting risk by turning manifest phantoms into evil zombies. arXiv preprint
arXiv:1207.3413, 2012.

[3] M. Bernhard. Risk-limiting audits: A practical systematization of knowledge. In International Joint Conference

on Electronic Voting, 2021.

[4] M. Blom, J. Budurushi, R. L. Rivest, P. B. Stark, P. J. Stuckey, V. Teague, and D. Vukcevic. Assertion-based
approaches to auditing complex elections, with application to party-list proportional elections. In International

Joint Conference on Electronic Voting, pages 47–62. Springer, 2021.

[5] J. Bretschneider, S. Flaherty, S. Goodman, M. Halvorson, R. Johnston, M. Lindeman, R. L. Rivest, P. Smith, and
P. B. Stark. Risk-limiting post-election audits: Why and how, 2012.

[6] S. Checkoway, A. Sarwate, and H. Shacham. Single-ballot risk-limiting audits using convex optimization. In
Proceedings of the 2010 International Conference on Electronic Voting Technology/Workshop on Trustworthy Elections,
EVT/WOTE’10, page 1–13, USA, 2010. USENIX Association.

[7] Election Assistance Commission. Voluntary voting system guidelines, 2005.

29



[8] B. Fisch, D. Freund, and M. Naor. Physical zero-knowledge proofs of physical properties. In Annual Cryptology

Conference, pages 313–336. Springer, 2014.

[9] B. C. for Justice and R. I. R. W. Group. Pilot implementation study of risk-limiting audit methods in the state of
Rhode Island, 2019.

[10] L. Garland, N. McBurnett, J. Morrell, M. K. Schneider, and S. Singer. Principles and best practices for post-election
tabulation audits, 2018.

[11] C. R. L. A. W. Group. Risk-limiting audit recommendations for connecticut, 2022.

[12] J. L. Hall, L. W. Miratrix, P. B. Stark, M. Briones, E. Ginnold, F. Oakley, M. Peaden, G. Pellerin, T. Stanionis, and
T. Webber. Implementing risk-limiting post-election audits in California. In USENIX, editor, 2009 Electronic Voting
Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE ’09), Montreal, Canada, 2009. USENIX,
USENIX.

[13] M. J. Higgins, R. L. Rivest, and P. B. Stark. Sharper p–values for strati�ed election audits. Statistics, Politics, and
Policy, 2(1), 2011.

[14] M. Lindeman. Rhode island presidential risk-limiting audit, november 19-24, 2020 (brief report), 2020.

[15] M. Lindeman and P. B. Stark. A gentle introduction to risk-limiting audits. IEEE Security & Privacy, 10(5):42–49,
2012.

[16] M. Lindeman, P. B. Stark, and V. S. Yates. Bravo: Ballot-polling risk-limiting audits to verify outcomes. In
EVT/WOTE, 2012.

[17] N. McBurnett. rlacalc - calculate statistical parameters for risk-limiting post-election audits. Jun 2022.

[18] J. Morrell. Knowing it’s right, part two. risk-limiting audit implementation workbook., 2019.

[19] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[20] N. A. of Sciences Engineering and Medicine. Securing the Vote: Protecting American Democracy. National
Academies Press, 2018.

[21] C. S. of State. 2020 general election risk-limiting audit discrepancy report, 2020.

[22] F. D. of State. Precinct-level election results, 2020.

[23] K. Ottoboni, M. Bernhard, J. A. Halderman, R. L. Rivest, and P. B. Stark. Bernoulli ballot polling: a manifest
improvement for risk-limiting audits. In International Conference on Financial Cryptography and Data Security,
pages 226–241, 2019.

[24] K. Ottoboni, P. B. Stark, M. Lindeman, and N. McBurnett. Risk-limiting audits by strati�ed union-intersection
tests of elections (SUITE). In International Joint Conference on Electronic Voting, pages 174–188. Springer, 2018.

[25] A. Russell, L. Michel, B. Fuller, M. Desmarais, J. Wohl, W. Reller, and S. Ahmad. Statistical analysis of post-election
audit data for the november 03, 2020 presidential elections, 2021.

[26] M. Sridhar and R. L. Rivest. k-cut: A simple approximately-uniform method for sampling ballots in post-election
audits. In International Conference on Financial Cryptography and Data Security, pages 242–256. Springer, 2020.

[27] P. Stark. Tools for comparison risk-limiting election audits, July 2022.

[28] P. B. Stark. Conservative statistical post-election audits. The Annals of Applied Statistics, 2(2):550 – 581, 2008.

[29] P. B. Stark. Auditing a collection of races simultaneously. arXiv preprint arXiv:0905.1422, 2009.

30



[30] P. B. Stark. Cast: Canvass audits by sampling and testing. IEEE Transactions on Information Forensics and Security,
4(4):708–717, 2009.

[31] P. B. Stark. E�cient post-election audits of multiple contests: 2009 california tests. In CELS 2009 4Th annual

conference on empirical legal studies paper, 2009.

[32] P. B. Stark. Risk-limiting postelection audits: Conservative P -values from common probability inequalities.
IEEE Transactions on Information Forensics and Security, 4(4):1005–1014, 2009.

[33] P. B. Stark. Super-simple simultaneous single-ballot risk-limiting audits. In EVT/WOTE, 2010.

[34] P. B. Stark. Sets of half-average nulls generate risk-limiting audits: Shangrla. In International Conference on

Financial Cryptography and Data Security, pages 319–336. Springer, 2020.

[35] P. B. Stark. Alpha: Audit that learns from previously hand-audited ballots, 2022.

[36] I.Waudby-Smith, P. B. Stark, and A. Ramdas. Rilacs: Risk limiting audits via con�dence sequences. In International
Joint Conference on Electronic Voting, pages 124–139. Springer, 2021.

[37] D. Williams. Probability with Martingales. Cambridge University Press, 1991.

A Calculation of CVR Generation Percentages

In this section, we discuss the reported percentages of CVR generated with the adaptive ballot comparison method.
We use Connecticut and Florida as case studies for three reasons: (1) elections are managed by each municipality with
no voting equipment that is capable of producing CVRs with identi�ers, (2) they represent di�erent population sizes
and number of precincts with Florida having approximately 6000 precincts and Connecticut having approximately
700, and (3) there is a large variance in municipality size. Furthermore, Connecticut uses a semi-automated transitive
tabulator [1] to produce CVRs a�er the fact for some fraction of municipalities.

Our experimental framework adopts the Kaplan-Markov test presented in De�nition 12 with γ = 1.1 and “a bit of
rounding” [15]. In particular, ballot sample sizes were obtained from Neal McBurnett’s tool, rlacalc [17], using the
following data: (1) For Connecticut, the number of ballots used is 1,823,857, which is the number of votes cast in 2020
CT presidential election. (2) For Florida, the population of ballots is 11,067,456, which is the number of votes cast in
the 2020 FL presidential election.

The number of precincts and voters for each town is pulled from the Connecticut Secretary of State’s website and
Florida’s precinct-level election results. Ballots were split among towns by reserving 5% of votes as absentee and
then splitting the remaining 95% evenly into the number of precincts in that town. This means that for a town the
number of batches is always one more than the number of precincts. 100 simulations are conducted of the following
experiment:

(1) Randomly distribute ballots to precincts according to their size.

(2) Randomly pick (with replacement) sample size ballots among all ballots. For all batches with a picked ballot
mark the batch as picked

(3) Compute the total fraction of ballots in batches that are picked divided by the total number of ballots.

This last fraction is reported as the fraction of CVR generated. We report the average value of number of distinct
picked batches and fraction of generated CVR are summarized in Table 1. The full simulation so�ware is available at
this Github repository. The full simulation code can also (1) distribute overstatement and understatement errors, and
(2) compute risk and stopping time. However, this functionality was not used to create Table 1.
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TOver,Force(S
act
E , T, cvrβ):

(1) If cvrβ is not properly formed tuple according to De�nition 5 output Error.
(2) While there exist two rows i and j where i < j and both have identi�er ι, replace the identi�er in row j

with an unused identi�er in {⊥t}.
(3) If Scvrβ 6= Sactβ , then

(a) While Scvrβ < Sactβ add a new row to cvrβ with an unused identi�er in {⊥t} and zeroes for all votes.
(b) While Scvrβ > Sactβ remove the last row of cvrβ .

(4) Place all rows with ι ∈ {⊥t} at the end of the CVR.
(5) For all ι whereWrι = 1, Lrι = 1 set Wrι = 0.
(6) IfWcvr

β 6= Wtab
β .

(a) While Wcvr
β <Wtab

β

i. While Lcvrβ > Ltabβ , �nd the last row r such that Lr = 1 setWr = 1, Lr = 0.
ii. Find the last row r such that Wr = 0, Lr = 0 setWr = 1, Lr = 0.

(b) While Wcvr
β >Wtab

β

i. While Lcvrβ < Ltabβ , �nd the last row r such that Wr = 1 setWr = 0, Lr = 1.
ii. Find the last row r such that Wr = 0, Lr = 0 set Wr = 0, Lr = 1.

(7) If Lcvrβ 6= Ltabβ . Set i := Scvrβ .

(a) While Lcvrβ < Ltabβ : �nd the last row r such that Wr = 0, Lr = 0 set Wr = 1, Lr = 0.
(b) While Lcvrβ > Ltabβ : �nd the last row r such that Wr = 0, Lr = 1 set Wr = 0, Lr = 0.

Figure 9: CVR transform function that ensures consistency and no overvotes.

B Auditor and transform without overvotes

In Section 3 we presented an auditor that allows “overvotes” [15]. An overvote means that a CVR row or ballot that
has marks for both the winner and loser is considered valid. It is also possible for TForce to create overvotes.

Here we present an alternative auditor and transform function that does not allow or create overvotes. The
auditor di�ers from Figure 3 in exactly two places:

(1) Step (2)bwhich setsWtab
iter := min(Wtab

iter ,S
act
iter) is moved a�er Step (2)c and replacedwithWtab

iter := min(Wtab
iter ,S

act
iter−

Ltabiter ). This ensures that the sum ofWtab
iter + Ltabiter ≤ Sactiter .

(2) A check is added to CheckConsistent as follows: If there exists a row with identi�er ι in cvrβ such that
Wι = 1 and Lι = 1 return Error. This step is added before the step that returns OK. Let CheckConsistentOver

denote the modi�ed procedure.

The main changes are in the transform function shown in Figure 9 here the transform never creates a row where
both winner and loser are 1. Di�erences are highlighted in Blue.

Claim 8. Figure 9 always completes and outputs a CVR such that CheckConsistentOver returns OK.

Proof. Importantly, a�er Step (3) in the modi�ed Figure 3 it is true that for all batches k,

Wtab
k + Ltabk ≤ Sactk .

Furthermore, a�er Step (3) in Figure 9 it is true that Sactk = Stabk = Scvrk . We now show that Steps (6) and (7) in
Figure 9 eventually lead to a CVR consistent with the tabulation without overvotes. At each iteration of Step (6) one
of four conditions must be true:
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(1) Wcvr
k = Wtab

k ,

(2) Wcvr
k >Wtab

k ,

(3) Lcvrk > Ltabk , or

(4) There is a row in the CVR with identi�er ι such that Wcvr
ι = 0, Lcvrι = 0.

To see that the four cases are complete, if the �rst three cases are not true then Wcvr
k < Wtab

k , Lcvrk ≤ Ltabk . This
means that

Wcvr
k + Lcvrk <Wtab

k + Ltabk ≤ Stabk = Scvrk .

That is, there are fewer than Scvrk 1s in the CVR and there must be some row with both winner and loser set to 0.
In each of the above cases, Step (6) either �nds a row to change or completes. Furthermore, note that Wcvr

k

monotonically approaches Wtab
k so it only requires at most |Wtab

k −Wcvr
k | steps to complete.

For Step (7) note that in addition to the above properties it now holds thatWcvr
k = Wtab

k . Of course, if Lcvrk > Ltabk
one can always change a row with Lcvrk = 1 and Wcvr = 0 to be both 0. Now suppose that Lcvrk < Ltabk , then it holds
that

Wcvr
k + Lcvrk = Wtab

k + Lcvrk <Wtab
k + Ltabk ≤ Stabk = Scvrk .

That is, there are fewer Scvrk 1s in the CVR and there must be some row with both winner and loser set to 0. This
completes the proof of Claim 8.
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